PROGRAMMING MANUAL

——FOR

MAZAK

CAM M-2

SERIAL NIMBER: 5561$\}$

Introduction:

The MAZATROL CAM M-2, CNC equipment has been developed for machining centers in whicn data can be input in daily conversational language. By the use of the CAM M-2, with its simple \& quick programming, a considerable reduction of set-up time can be achieved.

This manual refers mainly to programing of the CAM M-2 . Please read this manual carefully in order to use the CAM M-2 effectively. An operation manual is also available for the customer's convenience.

Caustions:
Since the ${ }^{*} \mathrm{CAM}$ M-2 has a highly automatic programuing function, programming can be completed in a short period of time. However, it is required to perform a tool path check on the graphic display berore starting automatic machining since the CAM $\quad M-2$ cannot process all kinds of machining due to tool path irregularities caused by discontinuity of calculated machining configuration.

Please note that no other function than mentioned in the manual provided.

The specifications of the machine are subject to change for improvement without advance notice.

CONTENTS

Page

1. OVERVIEH 1-1
2. FUNCTIONS OE AUTTOMATIC PROGRAMMING 2-1
2.1 Program and Unit Composition 2-1
2.1.1 Coumor unit 2-3
2.1.2 Fundamental coordinatesystem unit 2-11
2.1.3 Point (hole) machining mode unit 2-14
2.1.4 Programming the line machining mode unit 2-41
2.1.5 Eace machining mode unit 2-76
2.1.6 MANUAL PROGRAM mode unit 2-84
2.1.7 Special mode unft 2-88
2.1.8 Auxiliary coordinate system unit 2-98
2.1.9 End unit 2-99
2.2 Same Tool Priority Machining Function 2-100
2.2.1 Description of function 2-100
2.2.2 Input points 2-100
2.2.3 Procedures for input and editing function 2-100
2.2.4 Order of machining according to priority numbers 2-106
2.2.5 Range of tool priority machining (process) 2-109
2.2.6 Same tool priority function in multi-piece machining 2-111
3. PREPARING A PROGRAM 3-1
3.1 Procedure 3-1
3.2 Unit No. Search Procedures 3-55
3.3 Program End Search Procedures 3-56
3.4 Unit Name Search Procedures 3-57
3.5 Tool Name Search Procadures 3-59
3.6. Procedure for Inserting (Erasing) one Line 3-60
3.7 Procedure for Moving a Unit 3-62
Page
3.8 Procedure for Copying a Shape 3-64
3.9 Procedure for Copying a Unit 3-65
3.10 Procedure for Changing a Work Number 3-66
3.11 Procedure for Erasing Programs (all programs) 3-67
3.12 Procedure for Using the CMT Interface 3-68
3.13 Group Check 3-70
3.14 Unit Check 3-72
3.15 Background. Programming 3-75
4. MAZATROL M-2 COLLECTION OF PROGRAM EXAMPLES 4-1
5. MISCELLANEOUS FUNCTION (M FUNCTION) 5-1
Preparing an CAM M-2 + ROTARY TABLE Program APP. 1
6. OVERVIEW

A program is prepared to commanicate with the NC unit using a conversational language (MAZATROL Language).

Corresponding to a position of the cursor, a message and a menu
will be displayed in the lower part of a picture. According to the message, therefore, input data using a menu key or the ten keys.

Before proceeding to cut with CAM $M-2$, prepare a program and input a variety of data, following the procedure given below.

This chapter describes MAZATROL program preparation only. For other items, see the operating manual.

2. FUNCTIONS OF AUTOMATIC PROGRAMMING

2.1 Program and Unit Composition

Composition of Program
In principle, the program for one workpiece consists of the commom unit data, fundamental coordinate system unit data, machining unit data(tool sequence data and shape sequence data) and end unit data(and auxiliary coordinate system unit data and subprogram unit data etc., if necessary)
(T) Common unit data

Only one common unit data can be set at the head of the program relating to data on material to be machined, etc.
(2) Fundamental coordinate system unit data Data on relative position in the machine coordinates and workpiece coordinates.
(3) Machining unit data

Data on selection of machining method, etc.
(i) Tool sequence data

Data on tool operation mode and associated with it
(ii) Shape sequence data

Data associated with machining dimensions on drawing
(4) End unit data

Data on procedures practiced upon completion of machining
Composition of Unit
To make the program simpler, kinds of machining
 are set in the "unit" basis. Each unit is further divided into the tool sequence and shape sequence.

Unit	Purpose	Sequence
COMMON UNIT	It is always displayed at the head of each program to set the kind of material used, etc.	None
POINT MACH-ING	Used to select hole machining	Tool sequence and shape sequence
LINE MACH-ING	Used to select line machining	Tool sequence and shape sequence
FACE MACH-ING	Used to select. surface machining	Tool sequence and shape sequence
MAITUAL PROGRAM	Used to execute program, utilizing G code, M code, etc.	Shape sequence
OTHER	Call sub program Used to execute program containing many M codes Input a drum number (DRUM CHG) Automatically measure basic coordinates (MMS) Setting the pallet change No. (PALL CHG) Control of machined surface angle (Index) End of priority given to the same kinds tools (PROCESS END)	None (Shape sequence is available in the MMS unit only.)
WPC	Used to set fundamental coordinate system (WPC)	None
OFFSET	Used to set auxiliary coordinate system (OFFSET)	None
END	Used to set end	None

2.1.1 Common unit

The following unft is always displayed at the tread of a program which is going to be developed.

UNO 0	MULTI MODE

MAT: Material of workplece is inputted with the menu key.

$\begin{aligned} & \text { CAST } \\ & \text { IRN } \end{aligned}$	$\begin{gathered} \text { DUCTILE } \\ \text { CAST } \\ \text { IRN } \end{gathered}$	CARBON STEEL	$\begin{aligned} & \text { ALLOY } \\ & \text { STEEL } \end{aligned}$	STAINLES STEEL.	ALMINIUM	COPPER ALLOY	OTHER

CAST IRN	Gray cast iron
DUCTILE	
CAST IRN	- Spheroidal graphite cast iron
CARBON STEEL	. Carbon steel for machinery structures
ALLOY STEEL.	. Chromium-molybdenum steel
STAINLESS STE	Stafnless steel
ALMINIUM	. Aluminfum alloy
COPPER ALLOY	Copper alloy
OTHER	. . I through 8 can be set. (The parameter used for automatic selection of the cutting condition is put in the first screen for parameters "CUT COND. PARAM".

INITIAL-Z: This defines the 2 plane (*) where the tool does not have its cutting edge interfere with any workpiece, jig or the like even if it moves X - and Y - axially. It is commanded in coordinates ($Z=$) from the zero point of the workpiece. This value does not vary even when the auxiliary coordinate system is used.

[^0]MILTI MODE: Kind of multi-piece machining is selected by menu key.

MURTI OFF	MULTI $5 * 2$	OFESET TYPE					

MULTI: Select only when the menu key MULTI 5*2 is depressed.

PITCH-X: Pitch im machining a number of workpieces in the X direction.
PITCH-Y: Pitch in machining a number of workpieces in the Y direction.

Note: In the multimpiece machiming program, the graphic running order for the tool gath on the graphic display differs from those for the shape. The tool path is checked in accordance with the actual cutting.

About Multi-Piece Machining:
(1) MULTI OFF: Multi-piece machining is not executed.
(2) MILTI 5*2:

A maximum of ten workpieces can be machined at a time.
Among 1 through 10 , the lower five digits indicate that the workpieces in the lower row should be machined (or not machined). The upper five digits are for the upper row. " 1 " indicates the position of the workpiece used as reference point. The other workpieces are to be placed at the pitches of X and Y.

Relative positions of workpieces

Note 1:Multi-workpiece machining in the process with the manual program mit requires absolute 3 axes to be commanded in the initial sequence.

Note 2:The M code entered at the end of a tool sequence is outputted each time machining is performed at each multi-workpiece point. When selected in the M code unit, the M code will be outputted only once.
(3) OFFSET TYPE

If the offset is effected in the multi-piece machining mode, a maximum of ten data can be entered from the zero point in the programmed fundamental coordinates as offset data for common units.

Depressing the OFFSET END menu key prepares the system to receive the next unit data input.

| | | | | | | | OFFSET
 END |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Relative workpiece positions

$Y \underbrace{}_{X}$ Machining is executed in the coordinate system defined by

Multi-piece machining nesting function

In the multi-piece machining mode, a number of workpiece are machined at a time. This function may be nested in a subprogram to allow complexed pattern machining.

A - D : Unit number

	Common unit OFS-1 OFS-2
	FRM unit.
A	Face milling Tool 1
	Square
	Subprogram
D	```End milling (face) Tool }```
	Square
	End

Fig. 1

The machining patternes shown in Fig. 1 may be expressed is shown in Fig. 2
Each offset is nested against the workpiece zero point (FRM).

Fig. 2

The respective amount of offset, (1) through (6) '" , in each machining shown in Fig. 2 will be as follows:
(1) of $s-1$
(3) $($ ofs -1$)+($ ofs -3$)$
(2) of $s-2$
(4) $(o f s-1)+(0 f s-4)$
(4)) (ofs -2$)+($ ofs -4$)$
(5) (ofs-1) $+($ ofs -3$)+(o f s-5)$
(5)" (ofs-2) $+($ ofs -3$)+(o f s-5)$
(6) $($ ofs -1$)+($ ofs -3$)+($ ofs -6$)$
(6) " (ofs-2) $+($ ofs -3$)+($ ofs -6$)$
(5) ' (ofs -1$)+($ ofs -4$)+(o f s-5)$
(5) "' (ofs-2) $+($ ofs -4$)+(o f s-5)$
(6) ' $($ ofs -1$)+($ ofs -4$)+($ ofs $s-6)$
(6) $"$ (0 fs-2) $+(o f s-4)+(o f s-6)$

Next, how the offset is set will be detailed citing the section surrounded by the broken lines in Fig. 2 as an example.
(Construe that this will also apply to the offset in other sections.)

Order of multi-piece machining nesting

In multi-piece machining, offset starts at the block having the greatest loop. When the machining enters into a subprogram and encounters multipiece machining offset, it is added to the offset at the outside. The . deepest portion is machined as frequently as the product obtained by multiplication of the frequencise of multi-piece machining in each level. Therefore, the order of machining in Fig. 1 is as follows:

Table 1

Order	Offset amount (No. of Fig. 2)		Unit No.	Tool No.
1	ofs -1	(1)	A	1
2	ofs-2	(2)	A	1
3	(ofs-1) + (ofs-3)	(3)	B	2
4	$(o \underline{s}-1)+(o f s-4)$	(4)	B	2
5	$(0 f s-2)+(0 f s-3)$	(3)'	B	2
6	(ofs-2) + (ofs-4)	(4) 1	B	2
7	(ofs-1) + (ofs-3)	(3)	B	3
8	(ofs-1) + (ofs-4)	(4)	8	3
9	(ofs-2) + (of $s-3$)	(3) ${ }^{\prime}$	B	3
10	(ofs-2) + (ofs-4)	(4)'	B	3
11	$($ ofs -1$)+($ fs -3$)+($ fs -5$)$	(5)	C	2
12	$(o f s-1)+(o f s-3)+(o f s-6)$	(6)	C	2
13	$($ ofs -1$)+(o f s-4)+(0 f s-5)$	(5)'	C	2
14	$(0 f s-1)+(o f s-4)+(0 f s-6)$	(6):	C	2
15	$(0 f s-2)+(o f s-3)+(o f s-5)$	(5) ${ }^{\prime \prime}$	C	2
16	$($ ofs -2$)+($ ofs -3$)+($ fs -6$)$	(6) 1	C	2
17	$($ ofs -2$)+($ ofs -4$)+(o f s-5)$	(5) ${ }^{\prime \prime}$	C	2
18	$($ ofs -2$)+($ ofs 4) $+($ ofs -6$)$	(6) ${ }^{\prime \prime}$	C	2
19	$($ ofs -1$)+($ ofs -3$)+($ fs -5$)$	(5)	C	3
20	$(o f s-1)+($ ofs -3$)+($ ofs -6$)$	(6)	C	3
21	$(o f s-1)+(o f s-4)+($ ofs -5$)$	(5):	C	3
22	$(o f s-1)+(o f s-4)+(o f s-6)$	(6).	C	3
23	$($ ofs -2$)+($ ofs -3$)+($ ofs -5)	(5) $"$	C	3
24	(ofs-2) $+($ ofs -3$)+($ ofs -6$)$	(6) "	C	3
25	$(o f s-2)+(o f s-4)+(o f s-5)$	(5) 11	C	3
26	(ofs-2) + (ofs -4) + (ofs -6)	(6) ${ }^{\prime \prime}$	C	3
27	ofs-1	(1)	D	4
28	of s-2	(2)	D	4

2.1.2 Fundamental coordinate sỵstem unit
 Depress the $\overline{W P C}$ mode menu key.

POINT MACH-ING	LINE	FACE	MANUAL	OTHER	WPC	OFFSET	END	GROUP CHECK

The following display will appear on the screen:

UNO	$\begin{array}{r} \text { UNITT } \\ \text { WPC-O } \end{array}$	X	Y	θ	Z	4

(1) It is necessary to tell the NC unit at which position of the machine the workpiece has been installed. This unit sets the distance between the original point position and the original machine point in the work program. This unit is set after the common unit.
(2) Contents of data (See the figure on the next page.')

WPC- : Many WPC's can be set in one program. A figure is set here for identification. ($0 \sim 99$)
$X, Y, Z, 4$: Coordinates of the original workpiece position as seen from the zero machine position. (0 to ± 9999.999)
θ : Angle formed by the machine coordinates and work coordinates. (0 to ± 999.999)
(3) The measured values are entered as $X, Y, Z, 4$ and θ. During programming, these colums may be left blank and measured values may be entered just before starting of machining.

UNO	UNIT	X	Y	θ	2	4
1	$W P C-0$	-260.000	-450.000	θ_{0}	-600.000	0

(Y-Z axis)

(X-Z axis)

End surface of spindle at the machine zero. point position

Note: This illustration represents a horizontal type machining center.
(4) If the reference line of the material deviates from the machine coordinate system upon installation of the material to be machined, the machine can be controlled by rotating the coordinate system of the machining program. Data is set to θ. Then, θ forms the coordinate system as shown below:

Program coordinate locus ($\theta=0$)
$A p-B p-C p-D p-E p-F p-$
Machine coordinate locus ($\theta=\vartheta_{0}$)
Am - Bm - Cm - Dm - Em - Fm -
Formula for conversion from program coordinate system position to machine coordinate system position
$\begin{array}{lll}\text { Program coordinate system position } & \text { Np (Xap, Yap) } a=A, B, C \ldots \\ \text { Machine coordinate system position } & \text { Nm (Xam, Yam) } & \\ \text { Kam }=\text { Xap } \cdot \cos \theta_{0}-\text { Yap } \cdot \sin \theta_{0} & & \\ \text { Yam }=\text { Xap } \cdot \sin \theta_{0}-\text { Yap } \cdot \cos \theta_{0} & \end{array}$

2.1.3 Point(hole) machining mode unit

Depress the mode menu POINT MACH-ING

POINT MACH-ING	LINE MACH-ING	FACE MACH-ING	MANUAL PROGRAM	OTHER	WPC	OFFSET	END	GROUP CHECK

Based on the shape of a hole to be machined, a machining unit can be selected in a menu.
(1) Unit data

Machining unit selection menu (I)

Machining unit selection menu(II) BORINGI.
Select a boring unit out of the following four:

Note: indications parenthesized will not actually appear on the picture (M) represents
POINT/MACH-ING mode machining unit

Tools automatically operated: Spot drill, drill, chamfering cutter

Tools automatically operated: Spot drill, drill, end mill and chamfering cutter

Tools automatically operated: Spor drill, drill and back facing tool.

Tool automatically operated: Spot drill, drill, end mill (drill, boring) chamfering cutter, chip absorber and reamer

Tool automatically operated: Spot drill, drill, chamfering cutter, BORING HOLE Unit - (a) chip absorber and tap

Tool automatically operated: Spot drill, drill, end mill, boring and chamfering cutter

BORING HOLE Unit - (b)

Tool automatically operated: Spot drill, drill, end mill, boring
BORING HOLE Unit - (c) and chamfering cutter

Tool automatically operated: Spot drill, drill, end will, boring
BORING HOLE Unit - (d) and chamfering cutter

Tool automatically operated: Spot drill, drill, end mill, boring and chamfering cutter

Unit Name	Back boring				d			
Menu Key	BK-CBORE							
$\begin{aligned} & \text { UNIT } \\ & \text { BK-CBORE } \\ & \text { (M) } \end{aligned}$	$\begin{aligned} & \text { DIA(D) } \\ & 999.999 \end{aligned}$	$\begin{aligned} & \text { DEPTH(H) } \\ & 999.999 \end{aligned}$	BTM (7)	WALES(C)	PRE-DIA(d)	PRE-DEP (h)	CHMF (C)	WAL ${ }^{\text {(}}$ (7)
			$\begin{gathered} 9 \\ \text { (M) } \end{gathered}$	$\begin{gathered} 9 \\ (\mathrm{M}) \end{gathered}$	999.999	999.999	C99.9	$\begin{gathered} 9 \\ (\mathrm{M}) \end{gathered}$

Tool automatically operated: Spot drill, drill, end mill, boring, chamfering cutter, back facing bore

Tools automatically operated: End mill and chamfering cutter

Tools automatically operated: Spot drill, drill, end mill, chamfering cutter, chip collector and tap.

Menus available when machining unit shape definition data are entered:

(Note 1) WIth cursor $\longrightarrow \mathrm{BTM}$

∇	∇	$\nabla \nabla$	$\nabla \nabla$	$\nabla V \nabla$	$\nabla \nabla \nabla$	$\nabla \nabla \nabla$	$\nabla \nabla \nabla \nabla$	$\nabla \nabla \nabla \nabla$
I	2	3	4	5	6	7	8	9

(Note 2) With cursor \longrightarrow PRE-REAM (for reamer cycle only)

DRIILING	BORING	END MILIING					

(Note 3) With cursor \longrightarrow NOM- (for tap and seated tap cycle only)

METRIC	UNFY	PIPE	PIPE	PIPE			
THRD (M)	THRD(UNN	THRD(PT)	THRD (PF	THRD(PS)			

When UNFY THRD is depressed, with cursor \rightarrow NOM- (for cap and seated)

NO	H(I/2) HALF	Q(I/4) QUARTER	E(1/8) EIGHTH	S(I/16) SIXTENTH			

When PIPE THRD is deprassed, with cursor \rightarrow NOM- (for tap and seated (tycle only $)$

	H(1/2) RALF	Q(1/4) QUARTER	E(1/8) EIGHTH				

For the procedures of input, refer to " Point Machining (TAP) of
(v) Practical Examples by Unit in 3.1 Procedure ".
(2) Tool sequence data

Tools are automatically operated (developed) according to the machining unit.
\square Kinds of tools:
Spot drill (CTR-DR)
Drill (DRILL)
Chamfering cutter (CHF-M)
End mill (E-MILL)
Back facing tool (BK FACE)
Reamer (REAM)
Tap (TAP)
Borting tool (BOR BAR)
Back boring tool ($B-3$ BAR)
Chip collector (CHP VAC)Contents of sequence:

* ... unnecessary to set

	500L	Has-6	но.	Hote- ${ }^{\text {- }}$	ноге DEP	PRE-DIA	PRE-DEP	RGB DEPTH	c-SP	FR M M
criod	(1)	(2)	(3)	(4)	\checkmark	-	-	(Note 8a)	(10)	(11) (12) (12)
Digil	(1)	(2)	(3)	(4)	(3)	\checkmark	\checkmark	(NoCe Bb) (Nota 9a)	(10)	(11) (12) (12)
CㅍF-M	(1)	(Nore 2)	(3)	(Noce 4)	(Note 5)	(6)	(7)	- (Hoce 9b)	(10)	(11) (17) (17)
L-4\%-1	(1)	($\mathrm{NoL=}=2$)	(3)	(4)	(5)	(6)	-	(B) (Nota 9c)	(10)	(11) (12) (12)
bx face	(1)	(2)	(3)	(4)	(3)	\bullet	(Noca 7a)	- \quad	(10)	(11) (12) (12)
aEN4	(1)	(2)	(3)	(4)	(3)	-	-	- (Note 9d)	(10)	(11) (12) (12)
tap	(1)	(2)	(3)	(4)	(5)	-		($\mathrm{NoCe} 8 \mathrm{8c}$) ($\mathrm{Noca} \mathrm{9e)}$	(0)	(11) (12) (12)
gor ank	(1)	(2)	(3)	(4)	(5)	(Hoce 6) ${ }^{\text {a }}$	(Noce 7b)	(8) (Nore 9f)	(10)	(11) (12) (12)
b-b 3ar	(1)	(3)	(3)	(4)	(3)	(Note 6b)	(Note 7a)	(9) (Hote 9f)	(10)	(11) (12) (12)
chip vac	(Note 1)	(2)	(3)	-	-	-	-	- \quad	(10)	(11) (12) (12)

When the machining unit shape data have been entered, tools used to machine a workpiece according to the machining unit shape are automatically developed in the order of machining. Then, items shown in the list are displayed for each tool.
(1) Tool name (automatically selected)
[TOOL]
The tool may be exchanged with the use of the menu keys.

CENTER DRILL	DRILL	CHMF CUTTER	ENDMILL	BACKSPOT EACER	REAMER	TAP	BORING BAR	BACK BOR.BAR

This is used for editing only.
(Normally the tool determined automatically)
Note 1: The chip collector is not on the menu. It can only be selected automatically.
(2)

Nominal tool diameter
[NOM- \varnothing]
The end mill (E-MILL) and chamfering cutter (CHF-M) must be set with the numerical keys. Other tools are automatically set. The tools of the same kind are discriminated with the menu keys.

WITHOUT ID CODE	A	B	C	D	E	F	G	H

The nominal diameter is automatically displayed. In case tools have different length or is made of different materials, they are descriminated by adding suffix to them.
Note 2 : Alarm will result, if the end mill and chamfering cutter has not been registered in the tool file beforehand.
(3) Tool priority machining Nos. [NO.]

Proceed to input of tool priority machining numbers (prior machining No./subsequent machining No.). For input of machining numbers, menu keys and/or ten keys are used:
(1) Prior machining No. It is input with ten keys only. (1-63)
(2) Subsequent machining No. The DELAY PRIORITY menu key is depressed to inverse the menu. Then, the subsequent machining No. is entered with ten keys. (1-63)
(3) None (Input is unnecessary.)

(4) Machined hole diameter (automatically set) [HOLE-Ø] Note 4: For a chamfering cutter, this item equals twice the distance from its center to the edge. If there is no interference, 999 is set. It means " D_{0} " in the figure below.

Example 2: Other hole

(5) Depth of machined hole (automatically set) [HOLE DEP]

Note 5: This ftem means H_{0} in the figure below for a chamfering cutter.

Example 1: Chamfering a seated hole

(1) $\ldots H_{0}=0$
(2) $\ldots \mathrm{H}_{0}=10$

Example 2: Other hole

$H_{0}=0$
[PRE-DIA]

Note 6a: With boring, the boring cycle is entered in this item. Select a boring cycle from the menu and input it. During development of tools, "CYCLE 1 " is displayed in this item unconditionally.

CYCLE 1	CYCLE 2	CYCLE 3						

CYCLE 1: Fine boring cycle
CYCLE 2: Rough boring cycle (returned from hole bottom at quick feed speed)
CYCLE 3: Rough boring cycle (returned from hole bottom at a rate set by the parameter EM1)

Note 6b For a back boring tool, this 1tem means the through hole diameter.
(7) Lower hole depth (automatically set) [PRE-DEP]

Note 7a: In back facing and back boring, this item means the depth of the through hole.

Note 7b: In boring, this item means depth of the seat. Therefore, " 0 " is set for the through hole bore or stop-end hole bore.
(8) Cut surface roughness

Set with menu keys

Note 8a: When spot drilling is to be executed, the cutting edge angle is selected.

During development of tools, " 90° " is displayed in this item by itself.

90°	118°							

Note 8b: For drills; the drill cycle must be set with menu keys.

This defines the drilling cycle. Generally, it is determined automatically from the machining depth and drill diameter. For movement of tools, see the figure below.

Note 8c: For tapping, the doweling time is entered. Using ten keys, input the doweling time. During development of tools, "FIX" is displayed in this item by itself.
(9) Penetration (automatically determined) [DEPTH]

Note 9a: For drills, it means the amount of penetration achieved by one operation.

Note 9 b : Amount of chamfering for chamfering tools
Note 9c: For end mills, this item means the amount of penetram tion in the direction of radius per operation.

Note 9d: For reaming the reamer return speed is entered. Input data is set with menu keys or ten keys; During development of tools, "GO1" is displayed in this item by itself.

JOG GO1	RAPID GOO							

When "GOt" is selected, the reamer will return at. the speed set by the EMT parameter.

Note 9 e : Pitch of thread in case of tap.
Note 9f: Amount of penetration in radius direction in case of boring and back boring.
(10) Pertpheral speed

It is automatically determined when the menu key is depressed.

HSS AUTO	CARBIDE AUTO							

By selecting the material of the tool tip, the peripheral speed (血in) and feedrate (/rev) can be displayed (automatically determined).
(11) Feed
[FR]
Like peripheral speed, depression of the menu button automatically determines this item.
(12) M code
[M]
Data will enter when selection is made with a menu button or setting is made with a numerical key. (Two digits can be put in the former M and three digits can be entered in the latter M.)

01] ${ }_{\text {STOP }}^{\text {OPT }}$	$03 \text { SPNDL }$	(04) SPNDL	05 SPNDL	$\begin{array}{r} 07 \text { MIST } \\ \text { COOLANT } \end{array}$	$\begin{array}{r\|} \hline 08 \\ \text { COOLANT } \end{array}$	$\begin{gathered} 09 \mathrm{OFF} \\ \hline \text { COOLANT } \end{gathered}$	AIR BLAST	$\begin{aligned} & \text { NEXT } \\ & (1 / 3) \end{aligned}$

16 OPEN	15 CLOSE	11 TOOL	10 TOOL	53 CHIP	09 CHIP			NEST
DRTM CVR	DRIM CVR	UNCLAMP	CLAMP	VAC ON	VAC OFF			(3/3)

(3) Shape sequence data
\square Point machining shape
When the machining unit has been determined and the tool sequence data has been set, the machining shape must be set. The point machining shape has the following seven patterns:

- Shape pattern list

I Point (PT)

II Line (LIN)

III Square (SQR)

IV Grid (GRD)

V Circle (CIR)

VI Circular arc (ARC)

VII Chord (CHD)

	z z	$Z: Z$ coordinate value on face'to be machined (z) X : X coordinate value of hole to be machined (x) Y : Y coordinate value of hole to be machined (y) P : Tool route pattern (Tool moves at 0 thru 2 as Fig. 1.) Q : Set value should be or 1 . 1: Starting point (X,Y) is used only for positioning. At that point, no hole is bored. 0 : Hole is also bored at the starting point (X, Y). R : Return point level (See Fig. 2.) 1: R point (point at a clearance of "parameter: BS2" from machined surface) return. 0 : Initial point (defined in the workpiece coordinate system for common units) return.

For z subsequent shapes are identical in every pattern.

Note: When 1 or 2 is inputted in the first paint P of the sequence data, processing is perfomed as if 0 were inputted.

R : Return point level
1: R point (point at a clearance of "parameter: BS2" from machined surface) return.

0: Initial point (defined in the workpiece coordinate system for common units) return.

	$\begin{array}{r} \text { SQR } \\ ++++ \\ +\quad+ \\ ++++ \end{array}$	
	2 2	X Y $\mathrm{AN1}$ $\mathrm{AN2}$ T 1 T 2 F M N P Q R X y θ_{1} θ_{2} ℓ t 1 n 1 a 2 0 0 0 : Z coordinate value (Z) of machined surface : X coordinate value of first hole to be machined (x) : Y coordinate value of first hole to be machined (y) : Angle formed between x-axis and straight line of holes to be machined. (θ_{1}) $\left[\begin{array}{l}\text { CCW direction: + } \\ \text { CW direction: - }\end{array}\right]$ Angle formed between straight lines of first and last holes to be machined. (θ_{2}) $\left[\begin{array}{l}\text { CCW direction: }+ \\ \text { CW direction }: ~-~\end{array}\right]$: Length of initially machined hole straight line $\ell 1$ ($F=1$) pitch of holes on initially machined hole straight line $\ell 2(F=0)$: Length of last machined hole straight line $t 1$ ($F=1$) pitch of holes on last machined hole straight line $t 2$ ($F=0$) : Specifies ℓ and t. : Number of holes on initially machined hole straight line: nl

$\mathrm{N}:$ Number of holes last machined hole straight line: n2 $\mathrm{P}:$ To be set to 0 or 1 .

With $P=1$, no hole is drilled at four corner points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{1}, y_{1}\right)$
With $P=0$, holes are drilled also at four corner points.
(The drilling of starting point varies with setting 0.)
Q : To be set to 0 or 1
With $Q=1$, positioning only is done at the starting point.
With $Q=0$, the hole is drilled at the starting point.
R : Return point level
1: R point (point at a clearance of "parameter: BS2" from machined surface) return.
0: Initial point (defined in the workpiece coordinate system for common units) return.

P : To be set to 0 or 1.
With $P=1$, no hole is drilled at four corner points
$\left(x_{0}, y_{0}\right),\left(x_{1}, Y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$.
With $P=0$, hoies are drilled also at four corner points.
(The drilling of starting point varies with setting 0.)
Q : To be set to 0 or 1
With $Q=1$, positioning only is done at the starting point. With $Q=0$, the hole is drilled at the starting point.

R : Retura paint level
1: R point (point at a clearance of "parameter: BS.2" from machined surface) return.
0 : Initial point (defined in the workpiece coordinate, system for common units) return.

$Z: Z$ coordinate value of machined surface (Z)
$X: X$ coordinate value of circle center: x_{0}
Y : \bar{Z} coordinate value of circle center: y_{0}
AN1: Angle formed between initially machined hole (A) and Xaxis: $\theta_{1} \quad\left[\begin{array}{l}C W \text { direction: }+ \\ C W\end{array}\right]$
AN2: $\theta^{\prime}{ }_{2}=$ Angle between inftially and last machined holes ($\theta_{2}{ }^{\prime}$) ($F=1$) [CW direction: + \quad [
θ_{2} Angle between adjacent machined holes (θ_{2}) $(\mathrm{F}=0) \quad\left[\begin{array}{c}\text { CWW direction: } \\ \mathrm{CW} \text { direction : }\end{array}\right]$
T1: Radius of circle: rl
F : Specifies θ_{3} (to be set to 0 or 1).
M : Number of holes machined
Q : To be set to or 1
With $Q=0$, the hole is drilled at point (A). With $Q=1$, no hole is drilled at point (A).

R : Return point level
1: R point (point at a clearance of "parameter: BS2" from machined surface) return.

0: Initial point (defined in the workpiece coordinate syatem for common units) return.

2.1.4 Programming the Iine machining mode unit

Depress the LINE/MACH-ING mode menu.

POINT MACH-ING

Once the menu has been changed over to the machining unit selection menu, select the related unit.
(1) UnIt data

(2) Tool Sequence Data

End mill, face will, chamfering cutter and ball end mill
SNO TOOL NOM- \varnothing NO APRCE-X APRCH-Y TYPE RFD DEP-Z WID-R C-SP FR. M N
R1 (1)
(2) (3)
(4)
(5)
(6) (7)
(8) (9)
(10)
(11) (12) (12)
(Fl)
(1) Tool name (automatically determined) [TOOL]

Once a tool development has been done, E-MILL(endmill) is automatically displayed.

ENDMILL	FACE MILL	CHAMP CUTTER	BALL ENDMILL				

(2) Nominal tool diameter [NOM- ϕ]
Use ten keys to input the nominal diameter of a tool. Use a menu key to identify identical tool

A	B	C	D	E	F	G	H	J

Unless the nominal tool diameter has been registered in the tool file beforehand, an alarm will result.
(3) Tool priority machining Nos. [NO.]

Proceed to input of tool priority machining numbers (prior machining No./subsequent machining No.).

For input of machining numbers, menu keys and/or ten keys are used:
(1) Prior machining No.

It is input with ten keys only. (1-63)
(2) Subsequent machining No.

The DELAY PRIORITY menu key is depressed to inverse the menu. Then, the subsequent machining No. is entered with ten keys. (1-63)
(3) None (Input is unnecessary.)

(6) How to move a tool
[TYPE]
Select CW or CCW cutting, using menu keys.
This function, however, is available only in the four units LINE OUT, LINE IN, CHMF OUT and CHMF IN.
(7) Selection of feed in Z-axis direction [$2 F D]$

The feed speed at which the tool cuts from the approach point in the Z-axis direction is get in.tems of a multiple of feed speed in the radius direction, using ten keys.

Otherwise, either G01 feed (30% of the , radius direction feed rate) (see Note) or G00 feed (rapid feed) is selected with menu keys.

JOG GO1	RAPID GOO							

Note: Thirty percent is the standard value set by means of line and face machining parameters.
(8) Z-axial depth of cut per cycle [DEP-Z]

With the AUTO SET key depressed, the Z-axial depth is auto matically computed.
Ten keys can be also used to input the depth.
(To be inputted in the rough machining sequence only out of LINE CTR, LINE RGT, LINE LFT, LINE OUT and LINE IN.)

Diametric depth of cut per cycle
[WIDER]
In line machining, this depth is not required to be inputted.
(10)
Peripheral speed [C-SP]
(11) Feed [FR]

MSS	CARBIDE	
AUTO	AUTO	

Selecting a material of the tool cutting edge with a menu key will cause peripheral speed (/min) and feedrate (/rev) to be automatically determined.
Note : For ball end mill, it is not automatically determined.
(12) M code
[M]
Data can be inputted either by selecting with a menu key or by using ten keys. (The former M can be inputted in two digits while the latter can be inputted in three digits.)
(3) Shape Sequence Data
Δ Line/Face machining
After determining a machining unit and inputting the tool sequence data, then input a machining shape

Line/Face machining shapes are available in the following patterns :
I SQUARE
II CIRCLE
III ARBITRY ... LINE CW CW SHAPE SHIFT
SHAPE ROTATE (CW), SHAPE ROTATE (COW)
Note : The arbitrary shape cannot cover every shape due to a CPU operation error processing. Do not fail to check with GRAPHIC, etc, before applying the ARBITRY pattern, accordingly.

Pattern selecting menu (I)

SQUARE	CIRCLE				SHAPE END	CHECK

Pattern selecting menu (II)

- In case of ARBITRY only

| CH | CCI | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SHIFT | SHIFT | | | | | |
| | | | | | | |

(i) FIX SHAPE

SQUARE

Shape patrern
selece key CIRCLE

(iii) ARBITRARY SHAPE

Shape pattern
select key

Shape pattern

Shape pattern select key		I	ARBITRY Ω SHAPE SHIFT						

Shape pattem select key		I	ARBITRY Ω	
	PTN CW- SHIFT R/ θ; I : J $:$ P :	Ra Ce Ce Cy	ius r to rotate ter x coordina ter y coordinat les of repea	I J P CNR i j p the defined figure e i to rotate the defined figure j to rotate the defined figure ing the defined figure

Arbitry pattern definition
Arbitry shapes are applicable to line and face machining.
The arbitry shape pattern is defined as follows :
(Note) Be desired shape machining function cannot serve for all the purposes because of the imitations of the error processing in operation of the CPU. Before utilizing the function, never fail to perform checking with GRAPHICS or similar means.

1) Program

SNO PTN $X \quad Y \quad R / \theta \quad I \quad J \quad P \quad$ CNR

Definition of titles used on the CRT
SNO : sequence number(to be serial in the unit)
PTN : ... LINE
... CW ARC
... CCW ARC
X, Y : coordinates of end point (However, input the starting point initially.)
$R / \theta:$ machining pattern•element
angle formed with X axis for LINE
radius formed with X axis for ARC
I, J: machining pattern elements
line vector for LINE
arc center (i, j) for ARC
P : modifier (positioning relation between following figure and crossing point)

UP
DOWN
LEFT
RGT (right)
CANCEL (To cancel the modifier mentioned above)

CNR : specifies a cormer R or C at end point
C LINE-LINE only
R between arbitry figures (which may not have any crossing point)
2) Precuations upon Entry
(1) How to use "?"
a. The fact that "?" has been entered and set is not identical with a skip due to a motion of the cursor in the sense that data are invalid.
b. For the automatic programing results, only those items In which "?" Is entered will be displayed. For end point \bar{X} or Y, however, it is necessary to enter data or "?".
c. Ine I or J will not be displayed even if "?" is entered. (No spectal internal calculation will be done.)
d. When a very long machining program is being executed which could cause a bubble transmission, the results of the measurement, is some cause, may not be displayed when "?" is inputted.
(2) All coordinates of an end point and of a circle enter are entered in an absolute coordinate system.
(3) The straight line defined with θ or I, J is infinite in both directions. (It is not semi-1inear.) In other words, $\theta=30^{\circ}$ and $\theta=-150^{\circ}$ represent an identical straight line as illustrated below.

(4) Words to be selected

If it is necessary to select a word for a crossing or contacting point, its entry is urgened in a message. (These words may be entered in advance.)

Example

UP	DOWN	LEFT	RIGHT

$$
\text { With cursor } \rightarrow \text { shape pattern definition address } P \text {, }
$$

This menu is used to specify the point at which a shape pattern defined in the current sequence comes in contact with or crosses a sinape pattern defined in the following sequence.

ARBITRY

3) Figure Definition Pattern

$\mathrm{Na}^{\text {Nace }}$	PTN	X	Y	R / O	[J	P	CNR/CNC
P-1	LINE	\bigcirc	\bigcirc					
P-2	LINE	\bigcirc	?	\bigcirc				
P-3	LINE	$?$	\bigcirc	\bigcirc				
P-4	LINE	\bigcirc	$?$	$? / \rightarrow$	\bigcirc	\bigcirc		
P-5	LINE	$?$	0	$? / \rightarrow$	\bigcirc	\bigcirc		
P-6	CW/CCW	\bigcirc	\bigcirc	\bigcirc				
P-7	CW/CCW	\bigcirc	\bigcirc	$? / \rightarrow$	\bigcirc	\bigcirc		
P-8	$\cdot \mathrm{CW} / \mathrm{CCW}$	$?$	\bigcirc	$? / \rightarrow$	\bigcirc	\bigcirc	\bigcirc	
P-9	$\mathrm{CW} / \mathrm{CCW}$	\bigcirc	$?$	$? / \rightarrow$	\bigcirc	\bigcirc	\bigcirc	
P-10	CW/CCW	\bigcirc	\bigcirc	$? /$?	\bigcirc		
P-11	$\mathrm{CW} / \mathrm{CCW}$	\bigcirc	\bigcirc	$? / \rightarrow$	\bigcirc	?		
Q-1	LINE	?	$?$	\bigcirc			(O)	\triangle
Q-2	LINE	?	?	$? / \rightarrow$	\bigcirc	\bigcirc	(O)	Δ
Q-3	LINE	?	?	$? / \rightarrow$	$? / \rightarrow$	$? / \rightarrow$	(O)	\triangle
Q-4	CW/CCW	$?$?	$? / \rightarrow$	\bigcirc	\bigcirc	(0)	\triangle
$Q-5$	CW/CCW	?	?	\bigcirc	$? / \rightarrow$	$? / \rightarrow$	\bigcirc	\triangle
R-1	LINE	\bigcirc	0	\bigcirc			(O)	\triangle
$\mathrm{R}-2$	CW/CCW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	(O)	\triangle
R-3	$\mathrm{CW} / \mathrm{CCW}$	\bigcirc	?	\bigcirc	\bigcirc	\bigcirc	(O)	\triangle
R-4	CW/CCW	?	\bigcirc	\bigcirc	\bigcirc	\bigcirc	(O)	\triangle
R - 5	CW/CCW	?	?	\bigcirc	\bigcirc	\bigcirc	(O)	\triangle
$\mathrm{R}-6$	LINE	\bigcirc	\bigcirc	$? / \rightarrow$	\bigcirc	\bigcirc	(O)	\triangle

Note 1. For each of the fígure definition patterns, take note of following:
P1 - P11: The figure definition pattern can be terminated in the form of this input data.
Q1 - Q5 : Data are insufficient and a support with next figures is required.
R1 - R6 : The excess data which have been entered will be required to define figures before and after.
In the table above, "O" represents an item to be entered. "?" represents a "?" input.
"?/か" represents a "?" input or a skip due to a cursor motion " \rightarrow ".
"(o)" may need input as the case may be.
" \triangle " Input to specify the corner.

Q - 1	Q - 2
With P specified	With P syecified
$Q-3$	
With P specified	However, definition will be possible only when the line comes in contact with a next arc. (I, J and R are required.)
Q-4	
With P specified	
Q - 5	
With P specified	However, definition will be possible only when the line comes in contact with a next arc. (LINE (X,Y, Θ) or ARC (I, J, R) is required.

With P specified
4) Pattern Combination

Symbols used in the table above have the following meanings:

- : Definable
Δ : Definable (but with too much infomation)
x : Undefinable

5) Q Group Forerunning Parcern Followed by a Definable Pattern
(1) Forerunning patrern: $Q-1$
a. $Q-1, P-6$
a. $Q-1, P-6$

b. $Q-1, R-1$

Example of Input

	X	Y	R / θ	I	J	P
$Q-1$	$?$	$?$	θ_{1}			
$R-1$	x	y	θ_{2}			

Example of Input

PTN	X	Y	R / θ	I	J	P
LINE	$?$	$?$	θ			0
CW	$x / ?$	$Y / ?$	R	i	j	

With modifier p specified, right or left crossing point is selected.

If no crossing point exists, denifition is impossible. However, it will be possible, with an appropriate corner R inserced.

(2) Forerunning pattern: $Q-2$

Similar to the case of $Q-1$, with Arctan $(J / I)=\theta$
(3) Forerunning patcern: Q-3
a. $\mathrm{Q}-3, \mathrm{P}-7$ (or $\mathrm{R}-2, \mathrm{R}-3, \mathrm{R}-4, \mathrm{R}-5$)

Without modifier P specified, a path will be automatically selected according to the turning direction of the arc.

A Arc is turning CW.
B Arc is turning CCW.

In case where CCW is selected as the turning direction of the arc and contacting point A is required, UP (or LEFT) should be selected as modifier P .

In this case, corner R can be specified.

COW
(4) Eorerunning pattern: Q-4
a. $\mathrm{Q}-4, \mathrm{P}-1$

Example of Input

PTN	X	Y	R / θ	I	J	P
CW	$?$	$?$	$?$	i	j	+
LINE	x	y				

Without modifier P specified, a path will be automatically selected according to the turning direction of the arc.

A Arc is turning CW.
B Arc is turaing CCW.

An instance with modifier P specified is shown below. CW modifier P m DOWN

Example of Input

PTN	X	Y	R / θ	I	J	P
CW	$?$	$?$	$?$	i	j	$D O W N$
LINE	x	y				

b. $Q-4, P-3$ (or $P-5$)

A table given below shows the relation between an example of input and a selected path

	Example of Input							Path Selected							
	PTN	x	Y	2 $/ 0$	1	J.	P	PTM	X	Y	R $/ 0$	1	\checkmark	P	Path
Ex. 1	$\begin{aligned} & \text { CW } \\ & \text { LINE } \end{aligned}$	$\begin{aligned} & ? \\ & ? \end{aligned}$	$\begin{gathered} ? \\ x_{3} \end{gathered}$	$?$	i	j	\cdots	CW LINE	$\begin{aligned} & x_{1} \\ & x_{3} \end{aligned}$	$\begin{aligned} & y_{1} \\ & y_{3} . \end{aligned}$	θ	i	j	\rightarrow	
Ex. 2	$\begin{aligned} & \text { CCW } \\ & \text { LINE } \end{aligned}$	$\begin{aligned} & ? \\ & ? \end{aligned}$	$?$ 93	$\begin{aligned} & ? \\ & \theta \end{aligned}$	i	j	\rightarrow	$\begin{aligned} & \text { CCW } \\ & \text { LINE } \end{aligned}$	$\begin{aligned} & x_{2} \\ & x_{4} \end{aligned}$	$\begin{aligned} & y_{z} \\ & y_{3} \end{aligned}$	θ	i	j	\rightarrow	
Ex. 3	CW LINE	$\begin{aligned} & ? \\ & ? \end{aligned}$	$?$ y_{3}	7	i	j	DOW	CW LINE.	$\begin{aligned} & x_{2} \\ & x_{1} \end{aligned}$	$\begin{aligned} & \mathrm{y}_{2} \\ & \mathrm{y}_{\mathrm{J}} \end{aligned}$	0	i	j	DOL	
Ex. 4	$\begin{aligned} & \text { CCW } \\ & \text { LINE } \end{aligned}$	$\begin{aligned} & ? \\ & ? \end{aligned}$	$?$ $y s$	$?$	i	j	UP	$\begin{aligned} & \text { CCW } \\ & \text { LINE } \end{aligned}$	$\begin{aligned} & x^{2} \\ & x^{3} \end{aligned}$	$\begin{aligned} & \mathrm{y}_{1} \\ & \mathrm{ys} \end{aligned}$	θ	i	j	UP	

In the table above, modifier P has the
following meanings:
$P=r \rightarrow$: skipped with the cursor
$P=U P$: UP specified
$P=$ DOWN: DONN specified
c. $\mathrm{Q}-4, \mathrm{P}-2$ (or $\mathrm{P}-4$)

Similar to the case of preceding b. Q-4, P-3 (or P-5)
but (?, y3) replaced with ($\mathrm{x} 3, ?$).
d. $\quad \mathrm{Q}-4, \mathrm{P}-7$

In this combination, both arcs are determined. With modifier P specified, therefore, a crossing point is selected. Unless any crossing point exists, definition will be possible, with both arcs connected by inserting an appropriate corner R.

A table below shows the relation between examples of inputs and paths selected.

	Example of İnput						Path selected							
	PTN	X	Y	$\mathrm{R} / 0$	I	$J \quad \mathrm{P}$	PTN	X	Y	$\mathrm{R} / 0$	I	J	P	Path
Ex. 1	$\begin{aligned} & \mathrm{CW} \\ & \mathrm{CCW} \end{aligned}$	$\begin{gathered} ? \\ X_{3} \end{gathered}$	$?$ Y_{1}	$?$	i_{1} i_{2}	$\begin{array}{ll}\mathrm{j}_{1} & U P \\ \mathrm{j}_{2}\end{array}$	ciw CCW	$\begin{aligned} & X_{1} \\ & X_{3} \end{aligned}$	$\begin{aligned} & Y_{1} \\ & Y_{3} \end{aligned}$		$\begin{aligned} & i_{1} \\ & i_{2} \end{aligned}$	j j 2		$\overbrace{}^{-\cdots}$
Ex2.	$\begin{aligned} & \mathrm{cW} \\ & \mathrm{cw} \end{aligned}$	$\begin{gathered} ? \\ X_{3} \end{gathered}$	$\begin{aligned} & ? \\ & Y_{3} \end{aligned}$	$?$	$\begin{aligned} & i_{1} \\ & i_{2} \end{aligned}$	$\begin{array}{ll} j_{1} & U P \\ j_{2} & \end{array}$	$\begin{aligned} & \mathrm{CW} \\ & \mathrm{CW} \end{aligned}$	$\begin{aligned} & x_{1} \\ & x_{3} \end{aligned}$	$\begin{aligned} & Y_{1} \\ & Y_{1} \end{aligned}$		$\begin{aligned} & i_{2} \\ & i_{2} \end{aligned}$	ji j_{2}	UP	(
Ex. 3	$\begin{aligned} & \mathrm{cW} \\ & \mathrm{ccw} \end{aligned}$	$\begin{gathered} ? \\ x_{3} \end{gathered}$	$\begin{gathered} ? \\ Y_{3} \end{gathered}$	$?$	$\begin{aligned} & i_{1} \\ & i_{2} \end{aligned}$	$\begin{aligned} & \mathrm{j}_{1} \text { DOWN } \\ & \mathrm{j}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{CW} \\ & \mathrm{CCW} \end{aligned}$	$\begin{aligned} & X_{2} \\ & X_{3} \end{aligned}$	$\begin{aligned} & Y_{2} \\ & Y_{3} \end{aligned}$		$\begin{aligned} & i_{1} \\ & i_{2} \end{aligned}$	j_{3}	DOWN	
Ex. 4	$\begin{aligned} & \mathrm{CW} \\ & \mathrm{cw} \end{aligned}$	$\begin{gathered} ? \\ X_{3} \end{gathered}$	$\begin{gathered} ? \\ Y_{1} \end{gathered}$	$?$	$\begin{aligned} & i_{1} \\ & i_{2} \end{aligned}$	$\begin{aligned} & j_{1} \text { DOWN } \\ & j_{2} \end{aligned}$	$\begin{aligned} & \mathrm{CW} \\ & \mathrm{CW} \end{aligned}$	X_{2} X_{3}	$\begin{aligned} & Y_{2} \\ & Y_{3} \end{aligned}$		i_{1} i_{2}		DOWN	O

In the table above, modifier P has the following meaning:
$P=U P: U P$ specified
P = DOWN: DOWN specified
$r>0$ Corner R contacts in $C W$ direction
$r<0$ Corner R contacts in CW direction

e. $Q-4, Q-1(\cos Q-2)$

A cable below shows the relation between example of input and path.

	Example of Input							Path selected							
	PTN	X	Y	R/0	I	J		PTN	X	Y	$\mathrm{R} / 0$	I	J	P	Pach
Ex. 1	CW LINE	$?$	$?$	$?$ θ	i			CW LINE	¢ $?$	$\begin{gathered} \mathrm{yr} \\ ? \end{gathered}$	θ		j		
Ex. 2	$\begin{aligned} & \text { CCW } \\ & \text { LINE } \end{aligned}$	$\begin{aligned} & ? \\ & ? \end{aligned}$	$?$	$\begin{aligned} & ? \\ & \theta \end{aligned}$	i			$\begin{aligned} & \text { COW } \\ & \text { LINE } \end{aligned}$	$\begin{gathered} x_{2} \\ ? \end{gathered}$	$\begin{aligned} & y_{2} \\ & ? \end{aligned}$	θ				
Ex. 3	CW LINE	$?$ $?$	$?$ $?$	$\begin{aligned} & ? \\ & \theta \end{aligned}$	i		DOWN	CW IINE	$\begin{gathered} x_{2} \\ ? \end{gathered}$	$\begin{aligned} & y_{2} \\ & ? \end{aligned}$	θ			DOWN	
Ex. 4	$\begin{aligned} & \mathrm{CCW} \\ & \text { CINE } \end{aligned}$	$\begin{aligned} & ? \\ & ? \end{aligned}$	$?$	$\begin{aligned} & ? \\ & \theta \end{aligned}$				$\begin{aligned} & \text { CCW } \\ & \text { LINE } \end{aligned}$	$\begin{gathered} x_{1} \\ ? \end{gathered}$	$\begin{aligned} & y_{1} \\ & ? \end{aligned}$	θ			UP	

In the above, modifier P has the following meaning:
$P=r_{\ddagger}$: skipped with the cursor.
$P=U P: U P$ specified
P =DOWN: DOWN specified
E. $\quad Q-4, Q-3$

Q-3, however, is definable only when it subsequently comes in contact with an arc. And $R-2$ (or $R-3, R-4$ or $R-5$) is required.

Unless modifier P is specified in either block $Q-4$ or $Q-3$ the path will be automatically determined as shown in a table below.

Cormer: R		Path of Q-3
Q-4	$\mathrm{R}-2$ (or R-3, R	
CW	CH	$\left(X_{11}, Y_{11}\right) \rightarrow\left(X_{21}, Y_{21}\right)$
CW	CCW	$\left(X_{12}, Y_{12}\right) \rightarrow\left(X_{23}, Y_{23}\right)$
CCW	CW	$\left(X_{13}, Y_{13}\right) \rightarrow\left(X_{22}, Y_{22}\right)$
CCW	CCW	$\left(X_{14}, Y_{14}\right) \rightarrow\left(X_{24}, Y_{24}\right)$

With mocifier P specified, a contacting point is selected.

Example of Input							Path Selected						
PTN	X	Y	$\mathrm{R} / 0$	I	J	P	PTN	X	Y	$\mathrm{R} / 0$	I	J	P
CW	?	$?$?			WN	CW	X_{14}	Y_{14}		is		DOWN
LINE	?	?	?	?	?		LINE.	X 14					
CCW	X,	Y_{3}		i_{2}	j_{2}	\bigcirc	CCW	X	Y_{3}		iz	jz	

g. Q-4, R-1 (or R-6)

With modifier P specified, right or left crossing point is selected (definable even if broken either to the right or left.)
h. $\mathrm{Q}-4, \mathrm{R}-2$ (or R3,R4 or R5)

With modifier P specified, a crossing point is selected.
Unless any crossing exists, this combination is undefinable.
With an appropriate corner R inserted, however, it will be

If corner R is larger than radius of both circles, an arc intermally touching them should be obtained and reckoned as the comer. (In casc where both circles are turning. in the same direction.)

If two detached circle are turning in opposite directions, an arc internally touching the one and externally touching the other is to be reckoned as corner R. In this case, the corner R should be marked to specify positive and negative for CW and CCN, respectively.

The case where $Q-4$ is CW is shown as an example. (The path will be as shown in a solid line)

With corner $\mathrm{R}>0$ (CW)

With corner R < O (CCN)
rw

A table below shows the relation between turning direction and path.

Turning Direction		Path	
$\mathrm{Q}-4$	$\mathrm{R}-2$ (or $\mathrm{R}-3, \mathrm{R}-4$ or $\mathrm{R}-5$)	with $\mathrm{r}>0$	with $\mathrm{r}<0$
CW	CCW	(1)	(4)
CCW	CW	(3)	(2)

2.1.5 Face machining mode unit :

Depress mode menu FACE/MACH-ING

POINT	LINE	FACE	MANUAL	OTHER	WPC	OFFSET	END	GROUP
MACH-ING	MACH-ING	MACH-ING	PROGRAM					

\square
\square

\square \square

\square

Once the display has changed over to the machining unit selection menu, select a machining unit.
(1) Unit data

Note: The 3-D (dieing) is an optional item of MAZATROL CAM M-2.
Face milling End milling, cop

(2) Tool Sequence Data

End mill, face mill, chamfering cutter and ball end mill
ONO TOOL NOM- NO APRCA-X APRCH-Y TYPE RFD DEP -Z WID-R C-SP FR M N
R1 (1)
(2) (3) (4)
(5)
(8)
(9)
(10)
(11) (12) (12)
(Fl)
(1) Tool name (automatically displayed) [TOOL]

ENDMILL	FACEMIL	CHAMP. BAIL CUTTER ENDMILL					

(2) Nominal tool diameter (NOM- ϕ)

It is set with a numerical key. Tools of the same kind are distinguished by depressing the following menu keys.

A	B	C	D	E	F	G	H	J

If the tools have not been registered in the tool file, an alarm will result when the menu key is depressed.
(3) Tool priority machining Nos. [NO.]

Proceed to input of tool priority machining numbers (prior machining No./subsequent machining No.).
For input of machining numbers, menu keys and/or ten keys are used:
(1) Prior machining No. It is input with ten keys only. (1-63)
(2) Subsequent machining No.

The DELAY PRIORITY menu key is depressed to inverse the menu. Then, the subsequent machining No. is entered with ten keys. ($1-63$)
(3) None (Input is unnecessary.)

Menu

DELAY PRIORITY	PRI. NO. CHNGE	$\begin{aligned} & \text { PRI, NO } \\ & \text { ASSIGN } \end{aligned}$	PRI. NO ALL ERAS	$\begin{aligned} & \text { SUB PRO }= \\ & \text { PROC END } \end{aligned}$	
	see "2.2	ame Too	ity Mach	ing Funct	ion".

(4) Tool approach point coordinate X [APRCH-X]
(5) Tool approach point coordinate Y [APRCH-Y]

They are set with numerical keys or with the menu key
AUTO SET. (4) and (5) in common)
(6) Tool moving methods
[TYPE]
Tools are selected with menu keys. (The menu differs with each keind of tool.)

Face mill:

X	Y	X	Y	X BI-DIR	$X I-D I R$	Y UNI-DIR	UNI-DIR	BI-DIR SHORT

End mill:

X	Y	X	Y				
$B I-D I R$	$B I-D I R$	X UNI-DIR	UNI-DIR				

Other units:

| CW CUT | COW CUT | \cdot | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

(7) Selection of feed in Z-axis direction [ZFD]

The feed speed at which the tool cuts from the approach point in the Z-axis direction is set in terms of a multiple of feed speed in the radius direction, using ten keys.

Otherwise, either G01 feed (30% of the radius direction feed rate) (see Note) or G00 feed (rapid feed) is selected with menu keys.

JOG GO1	RAPID GOO							

Note: Thirty percent is the standard value set by means of line and face machining parameters.
(8) Penetration in an axial direction [DEP-Z]
(9) Penetration in radial direction in one operation [WID-R]

AUTO This is automatically calculated when the AUTO SET SET menu key is pressed. [WID-R]

The numerical keys will allow input or change of value.
(10) Peripheral speed
(11) Feed

HSS	CARBIDE
AUTO	AJTO

When the tool tip material is selected with the menu key, the peripheral speed (/min) and feed speed (/rev.) will be automatically determined.

Note : For ball end mill, it is not automatically determined.
(12) M code
[M]
Data can be inputted either by selecting with a menu key or by using ten keys. (The former M can be inputted in two digits while the latter can be inputted in three digits.)
2.1.6 MANUAL PROGRAM mode unit

Depress the MANUAL PROGRAM in the mode menu.

The manual program unit is used to execute a conventional program. One manual program mode unit involves only one tool.
(1) UnIt data

ONO UNIT TOOL	NOM- $\boldsymbol{\phi}$	NO
	MANY PRO	(1)

(1) Tool name [TOOL]

Menu (I)

| ENDMILL | FACEMILL | CHAMP.
 CUTTER | END |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Menu (II)

CENTER DRILL	DRILL.	BACKSPOT FACER	REAMER	TAP	BORING BAR	BACK BOR. BAR	CHIP VACUUM	NEXT $(2 / 2)$

Menu NO TOOL is selected, it operates as if the tool umber goes 0.
(2) Tool priority machining Nos. [NO.]

For input of priority machining numbers, menu keys and/or ten keys are used. (See "2.2 Same Tool. Priority Machining Function").
(2) Sequence data

SNO GI G2 DATAI DATA 2 DATA 3 DATA 4 DATA 5 DATA6 S M/B
1 (1) (1)
(2)
(2)
(2)
(2)
(2)
(2)
(3) (4)
:
(1) G code

Two codes can be inputted per one line of sequence. They are set with menu keys or numerical keys.
$\left.\begin{array}{|c|c|c|c|c|c|c|l|l|}\hline \text { GOO } & \text { G01 } & \text { G02 } & \text { G03 } & \begin{array}{c}\text { GAO } \\ \text { CANCEL }\end{array} & \text { G41 } & \text { G42 } & \text { MANUAL } \\ \text { LEFT } & \text { RIGHT } & \text { END }\end{array}\right]$
G codes usable:
G00 Positioning (quick feed)
GO1 Linear interpolation
G02 Circular arc interpolation (Clockwise: CW)
G03 Circular arc interpolation (Counterclockwise: CCW)

G04 Dwell
G17 Plane selection (Selection of XY plane)
G18 Plane selection (Selection of XX plane)
G19 Plane selection (Selection of YZ plane)

G28 Return to original point I
G30 Return to original point II
G40 Tool diameter correction cancel
G41 Tool diameter correction left.
G42 Tool diameter correction right
G90 Absolute command
G91 Incremental command
G94 Asychronous feed command
G95 Synchronous feed command
(Note 1) Group(Note 3)
Modal (A)

Modal A
Modal A

Modal A
(Note 2)
Non-modal A^{\prime}
Modal (B)

Modal B

Modal B

Non-modal A"
Non-modal A"
Modal (C)
Modal $\quad \mathrm{C}$
Modal C
Modal (D)
Modal D
Modal E
Modal (E)

Note 1. The modal G code is a G code which remains valid untiI another G code in the same group is commanded. The group is a gathering of the modal G codes which are interrelated one another. There are groups, A through E, according to the function given to each of the groups.
2. The unmodal G code is a G code which is valid only for that particular block.
3. The G code marked with \bigcirc is a modal G code which is automatically selected when the manual program mode starts. When one of them is used at the top of the program, it is not necessary to specify it.
(2) Various kinds of data

A maximum of six data can be put in one sequence line. Data to be entered are inputted with the menu key and data values, with numerical keys.

Menu (I)

X	Y	Z	4	F	R		DATA CANCEL	NEXT $(1 / 2)$

Menu (II)

I	J	K	PITCH (P)	DWELL (D)		DATA CANCEL	NEXT $(2 / 2)$

Each time the NEXI 1s depressed, menu (I) and menu (II) appear on the screen altermately.

Data		Purpose	Effective command value	Remarks
X	Coordinate system position data		$\begin{array}{r} 04 \pm 9999.999 \\ {[\mathrm{~mm}]} \end{array}$	
Y	Coordinate system position data		$\begin{array}{r} 0 \sim \pm 9999.999 \\ {[\mathrm{~mm}]} \end{array}$	
Z	Coordinate system position data		$\begin{array}{r} 0 \sim \pm 9999.999 \\ {[\mathrm{~mm}]} \end{array}$	
4	Additional axis coordinate system position data		$\begin{array}{r} 0 \sim \pm 9999.999 \\ {[\mathrm{~mm}]} \end{array}$	
F	Feed speed	Asynchronous feed	$\begin{aligned} & 0 n 9999 \\ & {[\mathrm{~m} / \mathrm{min}]} \end{aligned}$	Integer command
		Synchronous feed	$\begin{gathered} 0 \sim 999.999 \\ {[\mathrm{~mm} / \mathrm{rev.]}} \end{gathered}$	
R	Arc whose radius R is specified		$\begin{array}{r} 0 \sim \pm 9999.999 \\ {[\mathrm{~mm}]} \end{array}$	
I	Incremental stroke from the starting point to the coordinates of the arc center		$\begin{array}{r} 0 \sim \pm 9999.999 . . \\ {[\mathrm{nmm}]} \end{array}$	
J	```Incremental stroke from the starting point to the coordinates of the arc center```		$0 \sim \pm 9999.999$	
K	Incremental stroke from the starting point to the coordinates of the arc center		$\begin{array}{r} 0 \sim \pm 9999.999 \\ {[\text { uma }]} \end{array}$	

Data	Purpose	Effective command value	Remarks
P	Helical cut pitch	$\begin{array}{r} 0 \sim \pm 9999.999 \\ {[\mathrm{~mm}]} \end{array}$	Depress the PITCHI menu key
D	Dowelling time data	$\begin{array}{r} 0 \sim 999.999 \\ {[S E C]} \end{array}$	Depress the DOWEI menu key

(3) S code

Spindle function code (5 digits, 0 ~ 65535)
(4) M / B code

M: Auxiliary function code (0~999)
B: Rotary table auxiliary function code (0 ~ 999)
-_ Note 1 : For input of the B code, the $\begin{gathered}B C O D E \\ \text { INPUT }\end{gathered}$ must be depressed.
Note 2: Mirror, image M90, M9 1 and M92 comands should be given in the M code unit. They will be unavailable even if given in the single action unit (MANU PRO).

2.1.7 Specialmode unit

Depress the OTHER mode menu key.

M CODE	SUB PROGRAM	MMS	DRUM CHANGE	PALL CHG	INDEX	PROCESS END		

(i) M code unit

When the mode menu key M CODE is depressed, the following appears on the screen:

UNO UNTT NO M1 M2 M3 M4 MS M6 M7 M8
M(M) (1)
(1) Tool priority machining Nos. [NO.]

For input of priority uachining numbers, menu keys and/or ten keys are used. (See "2.2 Same Tool Priority Machining Function").
(ii) Sub-Program unit

When the mode menu key SUB PROGRAM is pushed, the screen displays the following:

| UNO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UNIT |
| SUB PRO | WNO. REPEAT ARGM1 ARGM2 ARGM3 ARGM4 ARGMS

The definition of this unit allows calling and execution of other programs. In case the same action is repeated many times or the same action is used by a plural number of programs, a program concerning such action may be specially developed and called by this unit. The program thus calling other programs is referred to as the main program while the programs thus called are referred to as sub-programs. Calling a sub-program is feferred to as nesting.

Both MAZATROL Program and EIA/ISO Program can nest sub-programs. However, the MAZATROL Program can nest sub-programs nine times at the most while the EIA/ISO Program can call them eight times at the most.

WORK NO.: Input the WORK NO. of the sub-program to be executed.

REPEAT : Input the number of repetitions of the specified sub-program.

ARGM : Input the ARGM applicable to calling of the user macro (option).

Note 1: Work Nos. are classified according to two levels: 9000's: Edition is impossible when a background progranl is being prepared.
Others: Edition is possible even when a background program is being prepared.
Note 2: The auxiliary coordinates specified by the main program are valid for subprograms. However, auxiliary coordinates specified by a subprogram are valid only for that subprogram. When the operation has returned to the main program, the auxiliary coordinates which were valid before
calling of the subprogran again control.
If fundamental coordinates are established in a subprogram, the auxiliary coordinates in the main program are cancelled. Note 3: Always enter a number in NUMBER.
(iii) MMS Unit

See "MAZAK Machining Monitor System" which will be separately furnished.
(iv) Drum change unit (for machines equipped with drum changers) Depressing the mode menu key DRJM CHANGE gives the following display on the picture:

| UNO UNIT |
| :---: | :---: |
| DRUM CHG |\quad DRUM NO.

Enter the drum No. (1-4) to be called.

Note 1: Input of this unit defines the: effective range of tool priority machining numbers. (See "2.2.5 Range of tool priority machining (process)").
(v) Pallet change unit

When the mode menu key PALL CHG is pushed, the following display is given:

UNO	UNIT
PALL CHG	PALLET NO

Input data for the pallet change unit include the command pallet No. and next pallet No. (entered within the parentheses).

Command pallet No,: Pallet No. to be replaced by means of the pallet change unit:
Next pallet No.: Pallet No. to be replaced by means of the next pallet change unit
(Input is possible only when the machine is provided with the next pallet change system.)

Note 1 : Input of this unit determines the effective range of tool priority machining Nos. When a pallet is to be changed, it is necessary to use the pallet change unit in principle.
(See "2.2.5 Range of tool priority machining (process)".)

Note 2 : The pallet No. currently present on the table is displayed on the POSITION and COMMAND display. This pallet No. is updated when pallet change is executed by the pallet change unit but it is not updated when the pallet change is executed by an M code or manually. In the latter cases, change the pallet No. in the MDI mode. In case operation has been suspended by resetting, do not forget to set a correct pallet No. value.

Note 3 : Pallet change hold switch and pallet number display.
Program
Pallet change 1
Pallet change 0
End
In the above program, turn on the pallet change hold switch after transferring a pallet from the table to the pallet stand using pallet change (PALI CHG) 1. Then, after the axis has moved, the pallet will not change and no pallet will exist on the table. However, the CRT displays pallet No. "1". This indicates the number of the pallet to be placed on the table after resetting the pallet change hold mode. If the NC unit has been reset under the conditions mentioned above, a pallet number must be input again.
If the system is in the pallet change hold mode at the start of the pallet change (PALI CHG) 0 operation, the CRT will display pallet No. "0". Likewise, there will be no pallet on the table after resetting the pallet change hold mode.

Note 4 : In the $\mathbb{R} 15 J$ provided with 2 PC , pallet No. " 0 " cannot be used. In programming, always use pallet No. 1 or 2. When pallet No. 0 is displayed on the CRT, input pallet No. 1 or 2 using PALL NO SET menu.

Note 5 : When there is a stacker crane, enter 2 in the current pallet number (PALLET NO.) on the CRT. This number cannot be updated. Note: Pallet 2 command does not cause the system to operate. If pallet is to operate, give the command, using an M or G code.

Note 6 : To execute the pallet change unit (PALL CHG) in a machine equipped with an index table, the index angle must be set in the range of angles in which pallets can be changed by providing an index unit before the pallet change unit.
(Example)

UNO xx

Give comand 0° if pallets
can be changed with the index table at 0°.
0° (Angle)

UNO *

1 (PaIlet number)

Note 7 : The use of this unit requires the response by the PC sequence. Be careful in adopting a new version of NC (E models and upwards).
(vi) Index unit

This unit is used to machine each plane indexed in the index table with the same tool, without changing the tool.

With the same tool priority function available on every plane, this unit is required.
When the mode menu INDEX is depressed, the following display is given:

UNO	UNIT	TURN POS X	TURN POS Y	TURN POS Z	ANGLE	TURN DIR
	INDEX					

The definition of this unit allows the control of the angle of the machined surface.

When tools (tools for prior, regular and subsequent machining) are searched in a machine to which the index table and NC rotary tables are applicable, the tool is changed after execution of the last index unit found during search. Also, when the pallet change; drum change or process end unit is searched, the unit is executed after executing the last index unit found during search.

TURN POS: Swing position coordinates is inputted (entered using the machine coordinate system). No axis will be moved unless inputted.
ANGLE : The table angle data is entered by "absolute" in either case of the NC rotary table, B code index table and M code index table.

TURN DIR: Display the following menu and set the swing direction with a menu key. (Applicable to the B code index table only.)

NEAR DIR (AUTO)	CW	CCW				\cdot	

Note 1 : B code index table
The NC regards as "0" the table angle when starting a program. Thereafter, the index position memory is updated whenever each index unit is executed. However, the memory is not updated when indexing is executed by other means (by MDI or manually) than the index unit.

When the index table does not specify " 0 " upon starting a program or when indexing is executed by other means than using the index unit, the direction may be reversed if indexing is executed by a short-cut indexing method. The direction may also be reversed when resetting it executed during indexing. Always set the table angle to 0° when starting a program. Upon restart, set the table angle in advance to the angle at the restarting point. In this case, if the second tool has a priority number the table will not swing but the axis will only move to the indexed swing position when the plane to be machined at the angle which is the same as the first one after restart.

Note 2 : M code index table
Because the NC regards as " O " the table angle when starting a program, set the table angle as " 0 "" by the MDI or manually if the table angle is not " 0 " ". If the index unit is then executed, the determined M code (AF2: MACH CONSTANT PAR NO. 2) is output as often as the frequency, where the table reaches the specified positions. Such frequency is determined by the minimum indexing angle (parameter: AF1).

Example: AF1: 90 and $A F 2=45$

When indexing is executed using an M code in the $M D$ or manually, the index position memory inside the NC is not updated. In principle, the M code index table should not be used for indexing by means of MDI or manual interruption.

If it is absolutely necessary to do so, index by MDI or manually and then execute the start after restoring the index angle to the value valid before interruption.
In case operation has been suspended by resetting, the data stored in the position memory inside of the NC differs from the current value. Therefore, set the index as " 0 " by MDI or manually, switch on and off the power and execute restart. Restart is possible only on the plane machined at a table angle of 0°.

Note 3 : By using the index unit, it is not possible to control the M code index table which requires two or more M codes to carry out a cycle of indexing or such index table as programs are executed at every step with an M code from the NC unit, with a programable controller on the index side.
Use the conventional M code unit to give commands. In this case, moreover, it is not possible to use the same tool priority function over a wide diversity of angles. With the process end unit (PRO END) used to delimit before and after the index M code unit, use the same tool priority function taking such a delimited angle as a range of the same tool priority (one process).

(vii) Process end unit

This unit specifies the effective range of the tool priority machining Nos. When the mode menu PROCESS END is depressed, the following display is given:

UNO	UNIT
PRO END	

NOTE 1: The effective range of the tool priority machining Nos. can be also defined by the pallet change unit. (See "2.2.5. Range of tool priority machining (pracess)").

2.1.8 Auxiliary coordinate system unit

Depress the OFS mode menu key.

POINT	LINE	FACE	MANUAL	OTHER	WPC	OFFSET	END	GROUP MACH-ING
MACH-ING	MACH-ING	PROGRAM						

The following display appears on the screen.

| UNO | UNIT
 OFFSET
 (M) | $\mathrm{U}(\mathrm{X})$ | $\mathrm{V}(\mathrm{Y})$ | $\mathrm{D}(\theta)$ |
| :--- | :--- | :--- | :--- | :--- | $\mathrm{W}(\mathrm{Z}) \mathrm{l}$

(1) The auxiliary coordinate system unit is used to transfer the zero program position (WPC) to any desired position for ease of program execution. (The auxiliary coordinate system unit is used.during execution of a program.)
(2) Contents of data (See the figure below.)
$\mathrm{U}(\mathrm{X}), \mathrm{V}(\mathrm{Y}), \mathrm{W}(\mathrm{Z})$: Amount of transfer from program zero point (0 to ± 9999.999)
$D(\theta) \quad: \quad$ Angle formed by work coordinate system and auxiliary coordinate system (0 to ± 999.999)

UNQ	UNIT	$U(X)$	$V(Y)$	$D(0)$	$W(Z)$
I	OFFSET	200.000	0	30	0

Dimensions of Hole I are given in reference to point $P 1$ while those of Hole 2 are given in reference to point P2.

P1-WPC

P2 can easily be obtained when the program is executed in the OFFSET mode.

Note 1) The auxiliary coordinate specified by a subprogram is cancelled when the control is returned to the main program.

2.1.9 End unit

Depress the END mode menu key.

The following display will appear on the screen.

| UNO | UNIT
 END
 (M) | |
| :---: | :---: | :---: | :---: |

(1) This unit is set at the end of the program.

The count command can be set in the end unit.
(2) Contents of data

CONTINUE: Indicates whether the program should be executed repeatedly or not. (executed: 1 , not executed: 0)

NUMBER : Each time this program has been executed, its frequency of execution is indicated by the parts counter on the position screen.
(Counted: 1, Not counted: 0)

Note 1: The count set value can be set using the position command screen. The cumulative count value can be also cleared.

Note 2: This unit cannot be entered midway through a program.

2.2 Same Tool Priority Machining Function

2.2.1 Description of function

The present function gives numbers to automatically developed tools in the order of machining to reduce the number of ATC's and shorten the machining time by executing machining in such an order.

2.2.2 Input points

(1) Tool sequence data for point/line/surface machining units
(2) Manual program mode unit data (invalid when there is no tool)
(3) MMS unit data
(4) M code unit data
2.2.3 Procedures for input and editing function
(1) Input of priority machining Nos.

Priority machining Nos. include the prior machining number and subsequent machining number. They are entered with menu keys and ten keys. Nos. are given to tools so that numbers may become greater by the order of the automatic tool development for tools in each unit.

There are three methods of machining number priority input.

By moving the cursor to the position of "NO" and the number is input in the following manner:
a. Prior machining number: The number is input with ten keys. The number is displayed in white.
b. Subsequent machining number: After depressing the DELAY. PRIORITY to inverse the menu, the later machining number is input with ten keys. The number is displayed in white on the pink inversed picture. To erase the inversion (to return to prior machining), depress the DELAY PRIORITY again.
c. No number is specified: Nothing is entered as input. Move the cursor to the next position.

Menu

$\left.$| DELAY |
| :--- | :---: | :---: | :---: | :---: | :---: |
| PRIORIT |\(\left|\begin{array}{l}PRI.NO.

CHNGE\end{array}\right|\)| PRI.NO. |
| :---: |
| ASSIGN |\(\left|\quad \begin{array}{c}PRI.NO.

ALL ERAS\end{array}\right|\)| SUB PRO= |
| :--- | :--- |
| PROC END | \right\rvert\,

The order of machining in each case of a, b and c above will be discussed in "2.2.4".

Note 1: For both prior and subsequent machining numbers, 1-63 may be adopted. These numbers may not necessarily serial. (Total; 126)
Note 2: When the same tool is used for a number of purposes, the same priority number may be specified for each purpose. If the same number is allotted to different tools, an alarm will result.
However, it is possible to allot different numbers to the same tool.
Note 3: To cancel a number already entered, put the cursor to the position of that number and push ${ }^{\circ}$. (ten key) and CLEAR.
(2) Change of priority No.

This function is used to renew the same priority numbers used in a process. (See the step (5) below.)

To cancel the same priority No. within the same process, push ${ }^{0} \cdot$ and CLEAR in *1 after practicing the same procedures described above.
(3) Allotment of priority numbers

A specified priority number is forcibly allotted to the same kind of tools in the same process (see (5)) in the following manner:

Procedures

To erase the priority No. for all the tools of the same kind in the same process, push and CLEAR in *1 after practicing the procedures described above.

Note: Be careful because this command is valid for all the tools of the same kind in a process whether or not priority numbers are registered.
(4) Cancellation of all priority mubers

All the priority numbers in a process (see (5)) or in a program are cancelled in the following manner:

Procedures

 applied to a program involving subprograms, read through the step (5) well.

(5) Utilization of process and SUB PRO $=$ PROC END

The effective range of the priority numbers editing function ((2) change of priority numbers, (3) allotment of priority numbers and (4) cancellation of all priority numbers) and duplicate registration check range are ranges defined by Process end (PRO END),Pallet change (PALL CHG) and Drum change (DRUM CHG) unit.

These ranges are the same as the effective range of priority numbers and are called "a process".
(See 2.2.5 Range of tool piority machining.)
When this editing function is applied to a program involving subprograms, the editing is executed only in the main program and no editing is executed in subprograms. If any unit in a subprogram defines the end of a process, it is ignored because search is impossible during editing. For these reasons, practice the following steps if a program involves subprograms:
a. If the priority number of the main program has been edited, edit subprograms in the same manner.
b. If any subprogram having a unit defining the end of a process is present in a process to be edited, depress SUB PRO $=$ PRO END to inverse the menu and then execute editing. Then, the subprogram unit inside of the process undergoing editing is treated like the PRO END and the process for editing is formed.
Example:

2.2.4 Order of machining according to priority numbers

Machining is executed in the following order:
(1) Machining by tools to which prior machining numbers are allotted is executed in the number order. (Prior machining)
(2) Machining by tools having no prior or subsequent machining numbers is executed according to the program. (ordinary machining)
(3) Machining by tools to which subsequent machining numbers are allotted is executed in the number order. (Subsequent machining)

Note 1: If the same number is given to the tools used at different machining positions, machining is executed at such machining positions according to the program.
Note 2: The subprogram unit during priority search machining is processed in the following manner:
1 If the subprogram is a MAZATROL program, processing is always executed. (Machining included in the subprogram is processed according, to priority numbers.)

2 If the subprogram unit is EIA/ISO, no processing is executed. Therefore, the EIA/ISO program executes machining in the ordinary machining order.

Note 3: If priority numbers are given by an M code unit, machining is executed only once according to these numbers. If an M code unit does not specify a priority number, machining is executed whenever a priority number is found during priority search.
Note 4: After machining priority search, the index unit read during search made before starting of machining by the tool concerned is executed.

Note 5: After all the tools involved in the machining process have been given priority machining numbers, the M code unit, without a number, will be executed again during the interval between the prior and the subsequent machining.
[Example of machining]

U Prior machining number
A Subsequent machining number
B code and M code index tables or NC rotary table and priority machining

When machining with the table angles being controlled, more effective machining will be possible by using the same tool priority machining function and the inder unit (See 2.1.7. "Special mode unit" (vi.) Index unit) together.

(Example)		
-Order of machining		
		Tool priori
		Commom unit
		FRM unit
		Index 0°
(1) (4)	$\begin{aligned} & \mathrm{U} 1 \\ & \mathrm{U} .2 \end{aligned}$	Drilling
		Spot
		Drill
		Circle
		Index 90'
(2) (5)	U 1 U 2	Drilling
		Spot
		Drill
		Line
		Index 180°
(3) (6)	$\begin{aligned} & \mathrm{U} 1 \\ & \mathrm{U} 2 \end{aligned}$	Drilling Spot Drill
		Square
		End

(Order)
Index 0°
(1) Spot ${ }^{\dagger}$ machining. Circle Index 90°
(2) Spot machining Line

Index 180°
\downarrow
(3) Spot machining Square

Index 0°
(4) Drill machining Circle

Index 90°
(5) Drili machining Line

Index 180°
(6) Drill machining Square

U Prior machining number

2.2.5 Range of tool priority machining (process)

The following units are used to define the end of a tool priority machining range:
(1) Drum change unit
(See 2.1.6-(iv).)
(2) Pallet change unit (See 2.1.6-(v).)
(3) Process end unit (See 2.1.6-(vii).)

Program

In the above case, machining is executed in the order of tool priority machining processes (1) through (6). In each process, machining is executed by priority machining number.

Note: For the pallet change function by the manual program mode unit and M codes and the same tool priority function are combined and used in the same program, it is necessary to put the process end unit before and after the manual progran mode unit and M codes for the pallet change.
(1) When unit defining end is present in a subprogram:

A: Subsequent machining No.

* End of priority machining number Process end, pallet change, drum change

Fig. 2

If process end unit is present in a subprogram as shown in Fig. 1 , the same tool priority function is executed in two ways as seen.infig. 2:
Starting the execution

Process 1
(a)
(b)
\longrightarrow (c)
C) \longrightarrow (d)
(d)
\rightarrow (e)

Process 2

2.2.6 Same tool priority function in multi-piece machining
(1) When nesting of the multi-piece machining function and the same tool priority function are duplicated, machining is executed in the following order:
(Explanation is given in reference with the same program composition composition describing nesting function for multi-piece machining in 2.1.1, to which priority numbers are attached.)

Fig. 1
Commom unit
ofs-1
of $\mathrm{s}-2$
FRM unit

A
U

D

Fig. 2
Machining pattern

Face milling
Tool 1
Square
Subprogram
End milling (plane)
Tool 4
Square
End

Commom unit
ofs-3 Commom unit
ofs-4

Drilling
U 2 Tool 2
U 3 Tool 3
Square
Subprogram
End

forkpiece zero point

The order of machining by the same tool priority function is as follows:

Order	Offset amount (No. of Fig.	2) :	Unit No.	Tool No.
1	ofs-1	(1)	A	1
2.	ofs-2	(2)	A	1
3	(ofs-1) + (ofs-3)	(3)	B	2
4	(ofs-1) + (ofs-3) + (ofs -5)	(5)	C	2
5	(ofs-2) + (ofs-3)	(6)	C	2
6	(ofs-1) + (ofs-4)	(4)	B	2
7	$(o f s-1)+(o f s-4)+(o f s-5)$	(5) ${ }^{1}$	C	2
8	(ofs-1) + (ofs-4) + (ofs-6)	(6):	C	2
9	(ofs-2) + (ofs-3)	(3)	B	2
10	(ofs-2) + (ofs-3) + (ofs-5)	(5) "	C	2
11	(ofs -2) + (ofs -3) + (ofs -6)	(6)"	C	2
12	(ofs-2) + (ofs-4)	(4)	B	2
13	$($ ofs -2$)+($ ofs -4$)+($ ofs -5$)$	(5) ${ }^{1}$	C	2
14	$($ (ofs-2) $+($ ofs -4$)+($ ofs-6)	(6) ${ }^{1+}$	c	2
15	(ofs-1.) + (ofs-3).	(3)	B	3.
16.	(ofs -1$)+($ ofs -3$)+($ ofs -5$)$	(5)	C	3
17	$($ ofs -1$)+($ ofs -3$)+(0 f s-6)$	(6)	C	3
18	$(o f s-1)+(o f s-4)$	(4)	B	3
19	$($ ofs -1$)+\left(o f_{s-4}\right)+($ ofs -5$)$	(5)	C	3
20	(ofs-1) $+($ ofs -4$)+(0 f s-6)$	(6) 1	C	3
21	(ofs-2) + (ofs-3)	(3):	B	3
22	(ofs -2$)+($ ofs -3$)+($ ofs -5$)$	(5) 11	c	3
23	$($ ofs -2$)+($ ofs -3$)+($ ofs -6$)$	(6) 1	C	3
24	$(o f s-2)+(0 f s-4)$	(4.)'	B	3
25	$($ ofs -2$)+($ ofs -4$)+(o f s-5)$	(5) 'I'	C	3
26	(ofs-2) $+($ ofs -4$)+(0 f s-6)$	(6) 11	C	3
27	ofs-1	(1)	D	4
28	of s-2	(2)	D	4

Note 1) In the 2*5 multi-piece machining, consider that each machining corresponds to ofs -1 , ofs -2 , ... in the above example. (The machining in the above example is regarded as multi-piece machining to which offsetting at a equal pitch is applied.)
(ii) More than two subprograms having the same level are involved:

* When the end of tool priority machining number range is entered: (See (2).)
（1）Order of machining when no end of priority machining number range（by process end，pallet change or drum change）is specified in a subprogram：
（1）$\# 1$
（2）$\# 1+\# 11$
（3）$⿰ ⿰ 三 丨 ⿰ 丨 三 八$ 1＋ik11＋ik111
（4）$\# 1+\# 11+\# 111$
（6）$\# 1+\# 11+\# 112$
（7）$\# 1+\# 11$
（8）$\# 1+\# 12$
（9）$\# 1+\# 1+12+\$ 111$
（10）$\# 1+\# 12+\# 111$
（11） $\begin{aligned} & \| 1+\# 12+\# 112 \\ & \text {（12）} \\ & \# 1+\# 12+\# 112\end{aligned}$
（13） $11+1+12$
（14）\＃1
（15）$\# 1+\$ 21$

（20）$\# 1+\# 22$
（21）$\# 1+\# 22+\# 211$
（22）$\# 1+\# 22+\# 211$
（22）$⿰ ⿰ 三 丨 ⿰ 丨 三 八$ 1＋\＃22 +1 ｜ 212
（24）$\# 1+\# 22+\# 212$
（25）$\# 1$
（26）$\# 2$
（27）$\# 2+\# 11$
（28）$\# 2+\# 11+\# 111$
（29）$\# 2+\# 11+\# 111$
（30）$i k 2+\# 11+\# 1112$
（31）$\# 2+\# 11+\# 112$
（32）$\# 2+\# 12$
（33）$\# 2+\$ 12$
$\begin{array}{cc}\text { Unit } & \text { Tool } \\ \text { a } & 1\end{array}$

	Offset	Unit	Too
（34）	\＃2＋\＃12＋\＃111	c	1
（35）	\＃2＋\＃12＋\＃111	d	
（36）	\＃2＋\＃12＋\＃112	c	
（37）	\＃2＋\＃12＋\＃112	d	
（38）	\＃2＋\＃12	e	
（39）	\＃2	f	
（40）	\＃2＋\＃21	g	
（41）	\＃2＋\＃21＋\＃211	h	
（42）	\＃2＋\＃21＋\＃211	i	
（43）	\＃2＋\＃21＋\＃212	h	
（44）	\＃2＋\＃21＋\＃212	i	
（45）	\＃2＋\＃22	8	
（46）	\＃2＋\＃22＋\＃211	h	
（47）	\＃2＋\＃22－\＃211	i	
（48）	\＃2＋\＃\＃22＋\＃212	h	
（49）	\＃2＋\＃22＋\＃212	i	
（50）	\＃2	k	1
（51）	\＃ $1+\# 11$	b	3
（52）	\＃1＋\＃12	b	3
（53）	\＃1＋\＃21	g	3
（54）	\＃1＋\＃22	g	3
（55）	\＃2＋\＃1t	b	3
（56）	\＃2＋\＃12	b	3
（57）	\＃2＋i\＃21	8	3
（58）	\＃2＋\＃22	g	3
（59）	\＃1	a	2
（6）	\＃2	a	2
（61）	\＃1	f	4
（62）	\＃2	£	4
（63）	\＃1＋i\＃21	j	1
（64）	\＃1＋\＃22	j	1
（65）	\＃${ }^{\text {＋}+ \text { \＃21 }}$	j	1
（66）	\＃2＋\＃22	j	1

（2）Order of machining when end of priority machining number range（by process end，pallet change or drum change）is specified in a subprogram：
（1）$⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 ㇂ ㇒ 丶 𠃌 ⿴ 囗 十$
（2）$⿰ ⿰ 三 丨 ⿰ 丨 三 一 1+\# 11$
（3）$\| 1+\mid ⿰ ⿰ 三 丨 ⿰ 丨 三 八 11+\# 111$
（4）$\# 1+\# 11+\# 112$
（5）$\# 1+\| 12$
（6）$⿰ ⿰ 三 丨 ⿰ 丨 三 一 1+\# 12+\# 111$
（7）$⿰ ⿰ 三 丨 ⿰ 丨 三 一 1+\# 12+\# 112$
（8）$\# 2$
（9）$\# 2+\# 11$
（10）$\# 2+\# 11+\# 111$
（11）$\# 2+\# 11+\# 112$
（12）$\# 2+\# 12$
（13）$\# 2+$＋12 $12+\# 111$
（14）$\# 2+\# 12+\# 112$
（15）$\# 1+\mid 111$
（16）$\# 1+\# 112$
（17）$\# 2+\# 11$
（18）$\# 2+\# 12$
（19）$\# 1$
（20）\＃2
（21）$\# 1+\# 11+\# 111$
（22）$\# 1+\# 11+\# 112$
（23）$\# 1+\# 11$
（24）$\# 1+\# 12+\# 111$
（25）$\# 1+\# 12+\# 112$
（26）$\# 1+\# 12$
（27）非
（28）$\# 1+\# 21$
（29）$\# 1+\# 21+\# 211$
（30）$\# 1+\# 21+\# 211$
（31）$\# 1+\# 21+\# 212$
（32）$\# 1+\# 21+\# 212$
（33）$⿰ ⿰ 三 丨 ⿰ 丨 三 一 1+\# 22$

Unit Tool Offset Unit Tool
a
b
c
c
b
c
c
a
b
c
c
b
c
c
b
b
b
b
a
a
d
d
e
d
d
e
f
g
b
i
h
i
g
\＃1＋\＃22＋\＃211
\＃1＋\＃22＋\＃211
\＃1＋\＃22＋\＃212 h
\＃1＋\＃22＋\＃212 i
\＃ 1 k
\＃2＋\＃11＋\＃111 d
\＃2＋\＃11＋\＃112 d
\＃2＋\＃11 e
\＃2＋\＃12＋\＃111 d
\＃2＋｜\＃12＋\＃112 d
\＃2＋\＃12 e
\＃2
\＃2＋\＃21 g
\＃2＋\＃21＋\＃211 h
\＃2＋\＃21＋\＃211 i
\＃2＋\＃21＋\＃2．12 h
\＃2＋\＃21＋\＃212
\＃2＋\＃22
\＃2＋\＃22＋\＃21 h
\＃2＋\＃22＋\＃21 i
\＃2＋\＃22＋\＃212 h
\＃2＋\＃22＋\＃212 i
\＃2
\＃1＋\＃21
3

\＃2＋\＃21 g 3
（60）\＃2＋\＃22 g

(61)	$\# 1$	f	4
(62)	$\# 2$	f	4
(63)	$\# 1+\# 21$	j	1
(64)	$\# 1+\# 22$	j	1
(65)	$\# 2+\# 21$	j	1
(66)	$\# 2+\# 22$	j	1

3. PREPARING A PROGRAM

3.1 Procedure

\$ Overview

END
END

Basic coordinate unit, Auxiliary coordinate unit, Point machining unit, Line machining unit, Plane machining unit, Manual program mode unit Special unit

Those required for machining must be inputted from these units

While responding to messages,
(1) Input the machining unit and data thereof,
(2) Input the tool development and sequence data, and
(3) Input the machining shape.

Repeat the above-mentioned operations for input each unit.

NOTE . To prepare a program, the work No. must be searched first. It is possible to prepare a new program only when the massage " NEW PROGRAM <PROGRAMP ? " is being displayed on the screen.
(i) Point Machining Program Procedure

(11) Line Machinfng Programing Procedure

$\begin{gathered} \text { POLNT } \\ \text { MACK-ING } \end{gathered}$	$\begin{gathered} \text { LINE } \\ \text { MACH-ING } \end{gathered}$	$\begin{gathered} \text { FACE } \\ \text { MACR-ING } \end{gathered}$	MANUAL PROGRAM	OTHER	HPC	OFESET	Elid	GROUP CHECK

Use menu keys to input rouphness.
Data other than that should be inputted with the ten keys.

- Once roughness has been inputted, the sequence is dicided into:

Rough cutting only at a roughness of 3 and below, and

Rough cutting and innish (or finish only) at a roughness of 4 and above.

- When priority tool No. is used, it is entered with a menu key or ten keys.
- Use menu keys to input the method.
(Data should be determined automatically through inputs with menu keys or should be fnputted with the ten keys.)

Use the ten keys to input the data.

(iii) Face Machining Programming Procedure

NOTE: Whenever two large and small shapes may be defined in a unit to define an end mill valley, pocket peak and pocket valley, always define the larger one first. (Example 1) If the second or smaller shape is arbitrary, depress menu keys STARTING POINT and LINE when inputting the shape starting point. Then, check that the number displayed on the picture in bIue. (Example 2)

Example 1)

Define as follows:
FIG PTN PIX/CX P1Y/CY P3X/R P3Y CNI CN2 CN3 CN4

1	SQR	0	0	100	100
2	CIR	50	50	15	$*$

FIG PNIT PIX/CX PIY/CY P3X/R P3Y CN1 CN2 CN3 CN4 $\begin{array}{llrrrrr}1 & \text { CIR } & 50 & 50 & 15 & * & * \\ 2 & \text { SQR } & 0 & 0 & 100 & 100 & *\end{array}$ If defined as shown above, alarm "382 DEFINED SHAPE TOO SMALL" will appear.

Example 2)

FIC	PIN	PIX/CX	P1Y/CY	P3X/R	P3Y	CNI	CN2	CN3	CN4
1	SQR	0	0	100	100				
	PTN	X	Y	R/	I	J	P	CNR	
2	LIN	50	25	blue					
3	LINE	25	50						
4	CW	50	25	25	50	50	DOWN		

(iv) Manual program mode unit program

PRECAUTIONS

1. Using absolute comands, enter coorkinates for the $X-, Y-$ and Z-axes into the block to which the first axis shift coumand is given. Otherwise, the tool path will differ from the actual machine operation. (In case where an incremental comand is included in the initial position commands of the manual program mode unit.) In principle, the tool moves with the No. 1 zero point reckoned as the reference position. Unless any move data have been inputted, moreover, the value of data is reckoned as zero. Besides, if the same tool as the preceeding one has been specified in the program it will move in an incremental stroke from the ending point of the preceeding unit.
2. If two G codes belonging to the same group are entered, only the one which was been entered last will accepted.
3. When the manual program mode unit starts, the modal G codes are automatically put into the following status. (Note 1)

Group A GOO Fast forward
Group B Gi7 XY plane selection
Group C G40 Tool diameter offset cancel
Group D G90 Absolute command
Group E G95 Synchronous feed (/rev)
However, alarm results if the G code specified by the A group (GOO, GO1, GO2 and GO3) for the first time is GO2 or GO3.
4. Deletion of Program Data

To cancel a G, S (speed), or M / B code, move the cursor
to the address of the code to be cancelled and enter
. CLEAR.
To delete any of the data from 1 through 6 , depress the menu key DATA CANCEL after moving the cursor.

G CODE GROUP TABLE

$\underset{A}{\text { Group }}\left\{\begin{array}{l}\text { G00 } \\ \text { G01 } \\ \text { G02 } \\ \text { G03 }\end{array}\right.$
$\underset{B}{\operatorname{Group}}\left\{\begin{array}{l}\text { G17 } \\ \text { G18 } \\ \text { G19 }\end{array}\right.$
$\underset{\mathrm{C}}{\mathrm{Group}}\left\{\begin{array}{l}\mathrm{G40} \\ \mathrm{G41} \\ \mathrm{G42}\end{array}\right.$
$\underset{\mathrm{D}}{\operatorname{Group}}\left\{\begin{array}{l}\text { G90 } \\ \text { G91 }\end{array}\right.$
$\underset{\mathrm{E}}{\mathrm{Group}}\left\{\begin{array}{l}\text { G94 } \\ \text { G95 }\end{array}\right.$

Fast forward
Linear interpolation
Circular interpolation (clockwise)
Circular interpolation (counterclockwise)
Dwell
Return to zero point I
Retura to zero point II
Plane selection (XY plane)
Plane selection (ZX plane)
Plane selection (YZ plane)
Tool diameter offset cancel Tool diameter offset left (shifted to left when viewed facing forward)
Tool diameter offset right (shifted to right when viewed facing forward)

Absolute command
Incremental cowmand
Asynchronous feed command Synchronous feed command

Modal (A)
Modal A
Modal A
Modal A
non-modal
non-modal
non-modal
Modal (B)
Modal B
Modal B
Moda1 (C)

Modal C

Modal C
Modal (D)
Modal D
Modal E
Modal (E)

Note 1) The modal G code means that which becomes effective until the input of another G code belonging to the same group. The group means gathering of modal G codes interrelated with each other, and the groups are classified into A to E according to their function.

Note 2) A non-modal G code is effective only in the block in which it is entered.

Note 3) Circled G codes are those (modal) automatically selected when initiating manual. program mode.
These need not be specified when used at the beginning of a program.
$G 00 \quad X \quad x_{1} \quad Y \quad y_{1} \quad Z \quad z_{1} \quad A \quad a_{1}$
With the above command, positioning is achieved at quick feed speed. The route of positioning is the shortest linear distance from the starting point to the terminal point.

(1) The number of axes which can simultaneously be driven is determined by the number of axes simultaneously controllable. However, any combination of axes can be adopted to the extent that such simultaneously controllable axes are used.
(2) The feed speed is so controlled that the time required is the shortest provided that the feed speed does mot exceed the quick feed speed for each axis.
(3) The tool always slows down and stops at the terminal point.

With the above command, linear interpolation is accomplished at the feed speed specified by the F code.

GO2, G03
On the plane selected with the plane select G code or addresses of two axes, any circular arc can be: selected.
with the command described below. Multi-quadrant arc interpolation and arc interpolation of additional axis can also be executed.

```
G02/GO3 X x_ Y yi I il J ji F fi
```

Arc rotation direction
Terminal point coordinates
Feed speed
Incremental stroke from the coordinates of the starting point to the coordinates of the arc center.

GO2: Clockwise (CW)
G03: Counterclockwise(CCW)
The plane on which arc inter-
 polation is to be executed is specified with G17, G18 or G19.

G17: Selection of XY plane
G18: Selection of $2 X$ plane
G19: Selection of YZ plane

In addition, arc radius R may be also specified to give the radius in the place of an incremental stroke (I, J, K) up to the center coordinates. The speed in the circmaferential direction(rotation direction) is defined by the feed speed at an accuracy of $\pm 1 \% 1$ mm/min. Note 1 . If an I or J command has'a contradiction in relations among starting and ending points and center coordinates, alarm 365 (ILLEGAL RADIUS) will result. (Allowable error range: imm in the metric system and 0.04 inches in the inch system.)

Note 2. If the cutter diameter compensation mode is changed over with an arc commanded ($G 40 \cdots G 41, G 40 \rightarrow G 42$ or $G^{4} 1 \rightarrow G 42$), an alarill will result.

Eelical Cutting

Helical cutting can be effected by entering the linear and pitch commands in the circular cutting program. For details, see "G17, 18 and 19 codes (plane selection)."

The GO4 code permits dowel operation.
Setting: After inputting G04 depress the DWELL menu key and input the set value for the dowel (sec.)

Example: Depressing the GO4 DWELL 5 INPUT will input G04 D5 in the program.

These codes are used to select the circular cutting arc plane. If any circular arc other than that whose plane has been selected is specified, an alarm will résult.

Example:

$$
\begin{aligned}
& \text { G17, }\left\{\begin{array}{l}
\text { GO2 } \\
\text { G03 }
\end{array}\right\}, X_{1}, Y_{1},\left\{\frac{R}{I_{-}}, J_{-}\right\} \\
& \text {G18, }\left\{\begin{array}{l}
\text { G02 } \\
\text { GO3 }
\end{array}, X_{1}, Z_{1},\left\{\frac{R}{I_{-}, J_{-}}\right\}\right. \\
& \text {G19, }\left\{\begin{array}{l}
\text { GO2 } \\
G 03
\end{array}\right\}, Y_{1}, Z_{1},\left\{\frac{R}{J_{-}}, X_{-}\right\}
\end{aligned}
$$

Helical Cutting:
Helical cutting is enabled by entering the linear and pitch commands (mm) in the above-mentioned circular cutting program. The circular arc radius R code is invalid only during helical cutting. Prepare the program by selecting the I, J and K central coordinates.

Example:

$$
\text { G17, }\left\{\begin{array}{l}
\text { GO3 } \\
\text { GO2 }
\end{array}\right\}, X_{1}, Y_{1}, Z_{1}, I_{-}, J, P_{-}
$$

$\left(\mathrm{X}_{1}, \mathrm{Y}_{1}, Z_{1}\right):$| Terminal point coordinares |
| :--- |
| (I, J) |
| Incremental stroke to the |

Center
: Pitch (min or inch)

G28 and G30

When G28 or G30 is given, always enter the coordinate value command in the block concerned(see Note 1).

Note I:
The coordinate values entered in the block for G28 and G30 constitute relay point coordinates. If the relay point data are not entered, the G28 and G30 commands will not be executed. The axis commanded only returns to the zero point

Example: When G28, Z0 is programmed:
20 stands for a relay point only. The Z-axis is, first of all, positioned at the zero point of the workpiece coordinate system in rapid feed. After that, the Z-axis only returns to the zero point.

The cool diameter offser is executed in a commanded plane selected. The terminal point coordinate values should be entered after
this command has been input.

G41 : Shifts the tool to the left by a distance equal to the tool diameter.

G42 : Shifts the tool to the right by a distance equal to the tool diameter.
G40 : Cancels G41 and G42.

Note 1:
If a workpiece with an inner diameter smaller than the tool's is commanded for cutting the interior of a workpiece, an offset error will result.

Example:

End mill Tool diameter: 30mm

The tool diameter is too great to do the cutting.
5
The N/C displays
OFFSET ERROR.

* Use a tool with a smaller diameter.

Note 2:

As stated earlier, the terminal point coordinates must be entered after giving G4l and G42. Unless coordinate values are entered in each block, without interruption, the tool diameter offset will not be executed properly. (This is because the N/C will ignore the tool diameter offset in the block when that block does not have a transfer command since the N / C always reads one block in advance.)

Shape Unavailable through Manual Program Cutter Diameter Compensation
(1) Such a shape as illustrated on the right side cannot be moved with the COMPENSATE LEFT command.

The COMPENSATE RIGHE command is applicable.
(This applies to LINE MACHINING LINE LEFT, 500.)


```
UNO UNIT TOOL YOM-\emptyset NO.
XX MANU E-MILI 20.A
    PRO
SNO GL G2 DATAI DATA2 DATA3 DATA4 ......
    1 
    3 1 41 X-30 Y100
    4 X-50 Y80
    2 X-50 I-10 J20
    I X-60 Y50
```

Never enter the G91 code (incremental code) in the block which has the initial axis shift command for the single action unit. (Instead, enter the absolute code).

In a program which contains more than one manual program mode unit, it is not necessary to execute the G90 command after executing the incremental command in the previous unit because the next unit is automatically given the G90 command (absolute) mode.

Example:

G94: Asynchronous feed (mm/min)
G95: Synchronous feed (mim/rev)

When the power is switched on, the synchronous feed mode is initiated.

When the G94 command is given, the F number is displayed in BLUE on the program screen.

When the G95 code is given, the F number is displayed in YELLOW.

Alarms in Manual Program Mode Unit
(1) No. 315

This alarm is caused, with data insufficient in the arc interpolation under the R command.
(2) No. 331

This alarm is caused, with a specified tool unavailable in the drum. (Tools have not been laid out.)
(3) No. 339

This alarm is caused, with the tool diameter of a specified tool unavailable in tool data (or tool diameter going 0).
(4) No. 363

This alarm is caused unless the block to which the manual program mode unit is commanded to initially move is in the GO2 or GO3 mode.
(5) No. 365

This alarm is caused in case where there is a contradiction in relations between central coordinates of starting and ending points in the arc interpolation under the (I, J, K) command.
(6) No. 378

This alarmi is caused in case where neither (I, J, K) nor R is entered in the arc interpolation, or where the compensation mode is cancelled In the arc interpolation or while the coordinate system is turned on $X Z$ and $Y Z$ planes.
(7) No. 379

The alarm is caused in case where identical coordinates value wituout any move entered in the compensation mode (G41 or G42).
(8) No. 380

This alarm is caused in case where a certain block or blocks has no command in the compensation mode, where neither (I, J, K) nor R is entered under the arc command in the compensation mode, where three or more blocks of move data are unavailable in the compensation mode,
where the compensation mode is changed over under the arc command in the compensation mode ($G 41-G 42, G 42 \rightarrow G 41$) and/or where the initial block on which the compensation is to act is not in either GOO or GO1 mode.
(V) Proctical Examples by Unit

T Point Machining (DRILL)
<Sectional Shape> <Machining Position>

<Program Example>

Note 2) When machining a point pattern, P represents a tool path.

Note 3) With $Q=0$, a point is machined. (With $Q=1$, positioning only is performed.)

Note 4) Machining is executed after initial point retirn by $\mathrm{R}=0$.

37 Point Machining (RGH CBOR)
<Sectional Shape> <Machining Position>

<Program Example>.

Note 1. With $F=0$, holes are spaced at a pitch of 60 .
Note 2. With $Q=0$, the hole to serve as the starting point is also machined. (With $Q=1$, the starting point is positioned only.)
Note 3. Machining is executed after R point return by $R=1$.

T7 Point machining (RGH BCB)

<Program Example>

(Note) With $F=1$, a row of holes machined has an overall length of 60 .

3 Point Machining (REAM)

```
<Sectional. Shape>
```

<Machining Position>

<Program Example>

Note) With the machining pattern set to SQR or GRD, P will be: With $\mathrm{P}=0$, drilling is performed at the three corner points other than the starting one. With $\mathrm{P}=1$, only positioning is performed at the three corner points other than the starting one.

刃 Point Machining (TAP)
<Sectional Shape> <Macnining Position>

<Program Example>

Note 1) How to input a spare unified screw:
(Example) In case of 3/4-16 unified screw:

$$
\text { Depress } \begin{aligned}
& \begin{array}{l}
Q(1 / 4) \\
\text { QUARTER }
\end{array} \\
& \hline
\end{aligned} \square \sqrt{ } \rightarrow 6 \text { and INPUT. }
$$

(Example 1) In case of $1-1 / 8$ unified screw:

$$
\begin{aligned}
\text { Depress } \begin{array}{l}
\begin{array}{l}
E(1 / 8) \\
\text { EIGHTHi}
\end{array} \\
\\
\\
\\
\\
\\
\text { Do not forget to depress. } \\
(7) \text { only is insufficient. })
\end{array}
\end{aligned}
$$

How to input a spare tubular screw:
(Example 2)In case of PT 3/8;

Depress \begin{tabular}{|c}

$E(I / 8)$
$E I G H T H$

\hline
\end{tabular} and INPUT.

In case of PE I;
Depress 1 and INPUT.

Note 2) With $Q=1$, only positioning is performed at the starting point where no machining is to be done.

Q Point Machining (BORING TL)

```
<Sectional Shape>
```

<Machining Position>

3 3 holes(N) in direction
$(X, Y)=(50,50)$
<Program Example>

Note•1). For boring, four cypes of menu are available. (T1; BORING, T2; BORING , SI; BORING, S2; BORING)

Depress $\frac{\text { BORING }}{\square+\pi}$ BORING.

3 Point Machining (BORING S1)
Machining Position>

$$
(X, Y)=(50.50)
$$

Note) With $P=1$ and $Q=1$, no machining is performed, but only positioning at the four shape corner points.
(T) Point Machining (bORING T2)
<Sectional Shape>

《Machining Position>

Hole $6(\mathrm{M})$
<Program Example>

\$ Point Machining (BORING S2)
<Sectional Shape>

<Program Example>

Note) With $F=0$, an inter-hole arc will have an angle of 45°. (With $F=1$, the entire arc will have an angle of 45°.)
Q Point Machining (BK-CBORE)
<Sectional Shape>

〈Program Example>

Note) When the machining pattern is set to $C H O R D, P=0$ indicates drilling at points on both sides of the chord; $P=1$ on the left side of the chord and $P=2$ on the right side. With $P=0$, moreover, input the total length of the chord as T1 and with $\mathrm{P}=1$ or 2 , input half the chord as Tl .

3 Point Machining (CIRC MIL)

<Sectional Shape>

<Machining Position>

$(X, Y)=(50,50)$

<Program Example>

Note) With $P=I$ and $Q=0$, positioning only is performed at the three corrner points other than the starting one, However, no machining is done.

E Point Machining (CBOR-TAP)
<Sectional Shape>

Machining Position>
$(X, Y)=(50,50)$
Starting point

<Program Example>

NOTE : With $P=1$ and $Q=1$, four points at corners are positioned only but not machined.

T Line Machining (LINE CTR)
(Description)
Line-line machining of an arbitrary shape is performed.

<Program Example>

Note I) Define a shape on an arbitrary basis in each of the units (LIN CRT, LIN RGT, LIN LFT, CHMF RGT, CHMF LFT and SLOT).
Note 2) Inputting RGH automatically determines FIN-Z.
Noce 3) Depressing menu key HSS AUTO (or CARBIDE AUTO) automatically determines the circumferential speed.

T Line Machining (LIN RGH)
(Description)
Line-arc machining of an
arbitrary shape is performed.
<Program Example>

Note 1) Inputting RGH automqticaliy determines FIN-Z and FIN-R.
Note 2) Either CW or CCW, an arc with angle of 180° and above requires an input of a negative value (-) as radius R.
However, the arc center values I and I may be positive (+)

With 75 (positive) inputted as R, meanwhile, the shape will be as illustrated on the right.

(f) Line Machining (LIN LFT) Two arcs, without crossing are connected with a corner radius given. This description relates to a program where $R>0$. See the note below in which $R<0$ is explained.

<Program Example>


```
UNO UNIT DEP SRV-Z SRV-R RGE CHMF FIN-Z FIN-R
```



```
SNO TOOL NOM- \(\bar{\phi}\) NO. APPR-X APPR-Y.TYPE ZFD DEP-ZWID-R C-SP FR M M
```



```
FIG PTN X-Y-R/O I \(J \quad P^{\#} C N R\)
    1 LINE -12 0
    \(2 \quad \mathrm{CW} \quad ? \quad \stackrel{?}{\square} \quad \frac{12}{15} \quad \frac{0}{0} \quad\) R100
    3 CCW \(\overline{45} \overline{0} \overline{15} \quad 3 \overline{0} \quad \overline{0} \quad\) (Note)
```

Note) With $\mathrm{R}<0$, the shape will be as illustrated below. In the below example, R is -20 .

CCW arc will result, with $R<0$.

* Line Machining (LIN LFT)

Graphic Shift Function
The graph shown on the
right can be defined
by setting points A, B, C
and D between SH and REP
in the program shape sequence.
Arc-arc machining is performed in an arbitrary shape.

<Program Example>

(7) Line Machining (LIN OUT)

Graphic Rotating Function
The graph illustrated on the right can be defined by setting points A, B, C and D between $C W$ and REP in the program shape sequence.

<Program Example>

Note) For CN and CCW arcs within the graphic rotating function, other than a 90° one input all of $X, Y, R / \theta, I$ and J.

Line Machining (LIN IN)
(Description)
An arbitrary shape is programmed so that an arc meets a line.

<Program Example>

团 Line Machining（CHMF RGT）
（Description）
An arbitrary shape is machined with a turning radius at the corners．

〈Program Example〉

E Line Machining (CHMF LFT)
(Description)
An arbitrary shape is machined with C at the corners.

<Program Example>


```
W Line Machining (CHMF OUT)
    (Description)
```

An arbitrary shape is programmed
with an unknown crossing with a
subsequent graph.
(?, ?) (150,150)

$(0,0)$
(?, ?)
<Program Example>

UNO	UNIT DEP	INTER-299		$\begin{aligned} & \text { INTER-R } \\ & 99 \end{aligned}$		$\underset{\leftrightarrow}{\text { RGH }}$	$\begin{gathered} \mathrm{CHMF} \\ 7 \end{gathered}$							
XX	CHMF OUT 0													
SNO	TOOL NOM- ϕ	NO.	APP			R-X	PR-Y	TYPE	ZFD	DEP-Z	WID-R	C-SP	FR M	M M
1	CHM-5 20.A		?		?	CCW	G01	γ	-	27	0.3			
FIG	PIN \bar{X}	Y		$\mathrm{R} / 0$	I	- J		P	CNR					
1	LINE 0	0												
2	LINE ?	$\stackrel{?}{7}$		0				RGT* (No	te)					
3	CCW 150	150		00	150	50		RGT						
4	LINE ?	?		0				LFT						
5	CCN	-		00	$\underline{0}$	100								

Note) If there are two crossings with a graph subsequently defined (LINE, CW and CCW), use a menu key (UP, DOWN, RIGHT and LEFT) to specify either of the crossings.

Q Line Machining (CHMF IN)

(Description)

In an arbitrary shape, the arc between two points is defined.

<Program Example>

(Face Machining (F-MILL)
(Description)
A fixed square shape is programed.

<Program Example>

Face Machining (TOP EMIL)

(Description)
A fixed circular shape is programed.

Roughness \quad (9)

<Program Example>

Face Machining (STEP)

(Description)

How to define an external and an internal shape. In the shape sequence, the external shape should be inputted first. Define external and internal shapes as fixed and arbitrary, respectively.

<Program Example>

UNO	UNIT	DEP	SRV-Z	SRV-R	BTM	WAL	FIN-	Z FI	N-R				
XX	STEP	0	10	-	2		0		. 6				
SNO	T002	NOM- ${ }^{\text {d }}$	No. AP	PR-X	PPR-Y	TYPE	2FD	DEP-Z	WID-R	$\mathrm{C}-\mathrm{SP}$	FR	M	M
R1	E-MIL	L $20 . \mathrm{A}$?	CW	601	10	12	14	0.135		
F2	E-MIL	L $20 . \hat{A}$				CF	G01	-	12	16	$\underline{0.448}$		
[FIG	PTN	P1x/Cx	P1Y/Cy	${ }^{\text {P P3XR }}$	${ }^{\text {P }} 3 \mathrm{Y}$	CN1	CN2	CN3	CN4				
1	CIR	100	100	100	-	\checkmark	$\stackrel{+}{*}$	-	\checkmark				
FIG	PTN	X	Y	R/日	I	J	P	CNR					
2	LINE	70	70										
3	LINE	80	120										
4	LINE	130	130										
5	LINE	120	80										

Note) If the second shape (internal shape) is arbitrary, depress menu keys $\begin{gathered}\text { STARTING and LINE in that order when inputting the } \\ \text { POINT }\end{gathered}$ starting point.

Values displayed in blue indicates the starting point.

8 Face Machining (POCKET)
(Description)
The graph in which a fixed
shape contains both a corner radius
and corner C is to be programmed.

<Program Example>

Face Machining (POKI MT)

(Description)

Define external and internal shapes as arbitrary and fixed, respectively. ($-100,100$) In the shape sequence, define the external shape first.

The external shape is defined using the graphic rotating function.

Roughness ∇ (3)
〈Program Example>

Note) Depress | $\begin{array}{l}\text { SHAPE } \\ \text { SHIFT }\end{array}$ |
| :--- | and \(\begin{aligned} \& CCW

\& \bigcap\end{aligned}\).

Eace Machining (POKT VLY)

(Description)

In this program, both external
and internal shapes are defined as arbitrary shapes.

> Bottom roughness $\nabla \nabla(5)$

<Program Example>

Note 1) Circled numbers represent the starting point.

3 Face Machining (SLOT)
(Description)
An arbitrary shape line-1ine
<Program Example>

Bottom roughness W
(5)

UNO	UNIT	DEP	SRV-Z	SLOT-WID	BIM	WAL	FIN-2	FIN-R			
XX	SLOT	0	5	25	4		0.6	0.42			
SNO	T002	NOM- ${ }^{\text {- }}$	NO. ${ }^{-1}$	APPR-X $\overline{\mathrm{X}}$ APPR-	- ${ }^{\text {T}}$ TY	$\mathrm{PE}^{\text {² }}$	DEP-Z	WID-R	C-SP	FR M	M
R1	E-MILL	$20 . \mathrm{A}$? ?		W	4.4		14	0.135	
F2	E-MILL.	20.A		$\stackrel{?}{\text { ? }}$		G G	\bigcirc		$\underline{14}$	0.32	
FIG	PTN	\bar{X}	Y	$\mathrm{R} / \mathrm{\theta}$		J	P	CNR			
1	LINE	0	0								
2	LINE	0	100								
3	LINE	$5 \overline{0}$	60								
4	LINE	100	100								
5	LINE	100	$\underline{0}$								

Wanual Program lode

<Progran Example>

$\frac{\sqrt{\mathrm{TNO} O}}{\mathrm{xx}}$	$\begin{array}{llll}\text { UNIT } & \text { TOOL } & \text { NOM- } \\ \text { MANU-PRO } & \text { E-MILL } & 20 \text { A } & \end{array}$									
SNO	G1	G2	DATAI	datal	data3	data 4	DATAS	Datag	S	M/B
1	0		X-60	Y ${ }^{\text {O }}$	2-30				100	
2	1		X-30			${ }_{\text {F }}^{\text {F }} 0.01$				
3	$\stackrel{3}{3}$	18	X 0		2 z 0		230			
4	4		D 5							
5	1	17	X 30	$\underline{10}$						
6	$\frac{1}{2}$		$\overline{\bar{x}} 90$	$\stackrel{7}{7} \frac{10}{10}$			230			
7	$\underline{1}$		或 120	$\stackrel{\rightharpoonup}{\underline{Y}}$						
8	91									
9	$\stackrel{3}{3}$	18	X 30		$\underline{3} \underline{30}$		F30			
10	$\frac{1}{1}$	17	X 30							

W Manual Program Mode (herical cutting)
(Description)
Pitch 25
Arc 360°


```
TNO UNIT TOOL NOM-D NO.
XX MANU E-MILL 20.A
    PRO
SNYO GI G2 DATA1 DATA2 DATA3 DATA4 DATA5 DATA6 S M/B
```



```
2 < \frac{1}{2}
```


\& Manual Program Mode(tool diameter compensation)
(Description)
G41 COMPENSATE LEFT
G42 COMPENSATE RIGET

NOTE: A block without the move command, if any, will cause compensation to be cancelled.

3.2 Unit No. Search Procedures

3.3 Program End Search Procedures

3.4 Unit Name Search Procedures

ROTETR1	ROTETE2	ROTETE3	ROTETE4	PARALL. 1	PARALL. 2	PARALL. 3	PARALL.4	SHIFT(1/2)

NOTE i: The menu GROUP CHECK is invalid here.

NOTE 2: Menus associated with options are valid whether or not options are employed.

3.5 Tool Name Search Procedures

3.6 Procedure for Inserting (Erasing) one line:


```
Note) Insertion in a unit is impossible.
```

3.7 Procedure for Moving a Unit

3.8 Procedure for Copying a Shape

3.9 Procedure for Copying a Unit

3.10 Procedure for Changing a Work Number

Example: Changing the work number 99 into 100 After inverting the menu by pushing RENGMBER menu key, push $9,9, \square$, $1,0,0$ and INPUT .

3:11 Procedure for Erasing Programs (all programs)

Throw the PROGRAM switch (with a key) to the ENABLE position. Then, depress the RESEZ key.

Depress the DISPLAY SELECT key to display the menu shown below. Then, depress the PROGRAM (menu key).

To erase all programs

Input a workpiece number to be erased.

Merely depress the TNPUT key (to erase
all programs).

3.12 Procedure For Lising the CIT Interface

1. LOAD puts cassette tape information in the CMT + NC NC unit.
2. SAVE saves NC information on the cassette JNC \rightarrow CMIT tape.
3. COMPARE checks that the NC information is the $\mathrm{NC}=\mathrm{CNT}$ same as the cassette tape information.
4. PROGRAM puts all the program information only ALL LDAD on the cassette tape in the NC unit.

PROCRAM	TOOL OATA	TOOL FILE	PAR	T00L OFFSET	LORK OFFSET	ERASE		SEART

Select either PROGRAM TOUL DATA TOOL FILE PAR, TOOL OFESET or WORK OFESET. Depress the menu key and ine cursor will move. These are unnecessary in the case of PROGRAM ALL LOAD.

(1) PROGRAM (16 sets)

Input a work number and depress the INPUT key.
(2) TOOL DATA (4 sets)

Input a drum number and depress the
INPUT key. * See note below.
(3) TOOL FILE, PAR, TOOL OFFSET and WORR OFFSET (1 set each). Depress 1 and INPUT.
(4) This is unnecessary in the case of PROGRAM ALL LOADI.

During the operation, menu key START is displayed inversed without going out.
At the same time when the program has ended, the START menu key dieplayed as inverted will go out.

NOTE : In the case of a drum changer, input a drum number.
3.13 Group Check

Depress this menu to check a shape in basic coordinates while preparing a program.

Depress menu key CHECK START .

 Start	NEKT GRULP	CHECK STEP			StlaPs: trase	IBI SM.AY shot	coorn OHFET	$\begin{gathered} \text { CHECK } \\ \text { His } \end{gathered}$

\uparrow
Shapes from the hed of the program to the subsequent basic coordinates are displayed on the picture.

(1) CHECK STEP Every time when this key is depressed, a shape is displayed in steps.
(2) SHAPE ERASE Depressing this key will erase the shape being displayed.
(3)

(4) COORD OFFSET Depressing this key will permit changin! a display viewpoint. (See "Graphic Display" in Operating Manual.)

Depress menu key NEXT GROUP .

CHECK START	NEXT GROUP	CHECK STEP		.	SHAPE ERASE	DISHIAY SODE	COORD OFFSET	CHECX END

\uparrow
Shapes from the next basic coordinates to those after next are displayed on the picture. Every time when this menu key is depressed, shapes can be checked one after another in basic coordinates.
The system will not operate unless the following basic coordinates are available.

Depress menu'key CHECK END.

| CHECK
 START | SEXT
 GROUP | CHECX
 STEP | | SHAPE
 ERASE | DISPIAMY
 MUDE | COORD
 OFFSET | CIIECK
 EAD |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Then, the display will return to the status before GROUP CHECK on the program picture is depressed.
3.14 Unit Check
(i) Checking a Unit + CHECK

The CHECX menu key is located at the end of the POINT, LINE and FACE SHAPE input menu array. Depressing the CHECK key
entering each shape will change the program picture over to the CHECK picture. And the shape will be drawn on the X, Y picture. (In the case of point machining, it is necessary to depress the CHECK and then the CHECK 100.
(Example)

CRECK
CONTINUE
will canse the display to draw a spot machining shape as
illustrated below.

In the automatic mode, depress CHECK and the scale will be automatically set so that the graph defined in the program will. appear to the full size of the picture.
CHECK END will cause a return to the original picture.
(ii) Checking a Unit +]SECTION CHECK

SECTION CHECK displays the development of tools for point machining. Only in the automatic mode and for $X Z$ coordinates. Depress the CHECK , last key of point machining menu, and menu JCAECK and JSECTION CHECK will be displayed. Then depress SECTION CHECK key and the same menu as CHECK will be displayed.
Depress CHECK CONTINUE so that spot machining unit tools will develop by turns on the picture.

WNO. 9999
UNO. 1 BORE S2
HOLE-ф
HOLE-DEP

SPOT
DRILL
E-MILL
E-MILL
BORING
BORING
$\mathrm{CHF}-\mathrm{M}$
CHF-M
10.
24.
24.
44.
30.
50.
5. 5.

Colors change from process (tool) to process (tool).
Depress CHECK STEP and the display appears for each tool.

3.15 Background Programming

Background programming means the preparation or edition of another program when machining is being executed according to a program. To avoid adverse effect on the program executing the machining, the following limitations must be observed:
i) A background program to be prepared should not be the program currently executing the rachining. It should be either the lowest program belonging to the program memory (Note 1) or an entire1y new program (Note 2).

Example:
Program memory

ii) The capacity in which background programming is possible is equivalent to that of the vacant area of the program memory. (See the figure above.) For example, if the vacant area of the RAM is 10 blocks, the capacity of background programming will be also 10 blocks.
Note 1) The program memory means memory area to hold programs in the NC.
2) A program whose work No. is blue on the program management display allows background programming.
If work No. is green, that program can not be prepared as background program.
iii) When using a bubble memory, the bubble memory and program memory will automatically exchange (transfer) programs between them in the course of machining if sub-programs for the main program currently engaged in machining are located in the bubble memory. In this while, the status of the program memory is so unstable that background programming is inhibited. That is, background programong is inhibited by the alarm which is given immediately when programs are exchanged (transfered) between the bubble memory and program memory during background programing.
(Before transfer)
Program memeory

(During transfer)

Supplement

1. In case the size of the entire machining programs does not exceed 580 blocks, no programs will be transferred between the bubble and program memories, if machining is started after transferring all the machining programs to the program memory. In this case, background programming is not inhibited at all because the memories are stable.
2. In case the size of the entire machining programs exceeds 580 blocks, as many machining programs as possible should be transferred to the program memory by WORR NO. SERCH before starting machining. so that the machining time until starting of transfer of machining programs between the bubble and program memories may become the longest. In this status, background programming will be possible so long as no programs are exchanged between the bubble memory and program memory.

In this case, no program is transferred between the bubble memory and RAM until the WNO. 200 sub-program is called.

If MO1 (optional stop) prepared with the M code unit is provided in front of the sub-program unit used for calling a sub-program to be transferred from the bubble memory before starting aachining, background programming will not be inhibited abruptly because the optional stop is effective.

After optional stop, machine operation or programming may begin. When machine starts operating, continue programming by one of the following process.
a) Continue programming but under a different program number. When completed, under a third program number, copy the previous 2 programs.
b) Under a different program number, copy the program data and continue programming until completed.

OPTIONAL STOP

OPTIONAL STOP

3. Programs in the bubble memory cannot be displayed for the purpose of preparing a background programming.
4. Systems with bubble memory cannot perform shape check of a program during background programming.

4. MAZATROL M - 2 COLLECTION OF PROGRAM EXAMPLES

In the text, the following should be taken for engagements:
(1) \square represents an operating key. (a push button on the control panel) INPUT, for example, signifies that the INPUT key be depressed.
(2) \square represents a menu. The term, menu, means the nine seiectors displayed in the lower part of the picture.

PROGRAM, for example, signifies that the yellow \square displayed under the PROGRAM be depressed out of the menu selectors displayed in the lower part of the picture.
(3) The term, message, means a question displayed in the lower part of the picture.

(4) The term, cursor, means an oblong frame flashing on the picture, The position at which the cursor is placed is the point at which data are to be set.

In the present NC system, it is necessary to register applicable tools (tools in hand) before preparing a program.

The tools to be registered are four types, i.e., E-MILL, F-MILL, CHAMF cutters and BALL ENDMILL.
Registering tools beforehand is called "TOOL FILE"

In this example, therefore, file tools first of all after switching on the machine.
(1) How to switch on:

Depress the 0 in the upper left of the control panel.

Next, validify the program rewriting key-switch. (If it remains invalid, no program can be erased or 'rewritten.)
(2) TOOL FILE: ${ }^{\prime}$

To file tools, change the display over to the TOOL FILE picture.

DISPLAY
SELECT

Thus, the TOOL FILE picture has appeared. Depressing the $\quad \ddagger$ will cause the cursor to appear at (1) . Entering data will sequentially move the cursor to the right.

Carry out operations in accordance with the program sheet given on the next page.

Operation (1) thru (5) will cause the picture to display:
"F-MLLL 100A * CBD 4 6 * $"$
Likewise, operations (6) thru (10) will cause the picture to display:
"F-MILL 100B * CBD 0.8 6 * ."
Subsequently, set data from No, 3 and on similarly.

TOOL FILE Picture upon Completion

FNO. TOOL NOM- \varnothing MIN- \emptyset MAT DEPTH NO. ANG NO. TOOL NON-ø MIN-ø MAT DEPTH NO. ANG

NOTE: (NO.) is not actually displayed in the picture. This number represents a program sheet number. That is, if the cursor is positioned there, carry out the operation corresponding to that number and data will be displayed.

The same applies to any piccure subsequencly displayed.

NOTE: Because the cool file contains very important data on programming and cool layour, automatic determinants for the program nust be newly set and cool layout must be newly executed if any data registered on this picture is changed.

NO.	PROGRAM MESSAGE	OPERATION	MEANING OF OPERATION
1	HHYCH TYPE OF TOOL <MENU $>$?	PACEMILL	Select a tool name.
2	NOMINAL DIAMEI'ER ?	[1, 0, 0, 0	Enter a nominal diameter.
21	TOOL ID CODE <CODE> ?	AT	Enter a suffix (to identify tools with an identical diameter). (Select menu)
3	TOOL MATERTAL <MENU> ?	CARBIDE	Enter a material of the tool (Select menu)
4	MAX. DEPTH OF CUT ?	4, INPUT	Enter a maximum Z-axial cutting allowance.
5	NUMBER OF TEETH ?	$6, \text { INPUT }$	Enter the number of teeth.
6	WHICH TYPE OF TOOL <MENU> ?	PACEMILL	See 1.
7	NOMINAL DIANETER ?	$1,0,0, \text { INPUT }$	See 2.
$7{ }^{\prime}$	TOOL ID CODE <CODE> ?	B	See 2^{\prime}.
8	TOOL MATERTAL MENU >?	Carbide	Enter a material of the tool.

No.	PROGRAM MESSAGE	OPERATION	MEANING OF OPERATION
9	MAX. DEPTH OF CUT ?	$\cdots, 8$ In INPUT	See 4.
10	NUNBER OF TEETH ?	6, INPUT	See 5.
11	WHICH TYPE OF TOOL <MENU> ?	ENDMILL	
12	NOMTNAL DIAMETER ?	$2,8, \quad \text { INPUT }$	
12^{\prime}	TOOL ID CODE <MENU> ?	AT	
13	TOOL MATERIAL <EENU> ?	\|HSS	
	$=$ do. $=$		
14	WHICH TYPE OF TOOL <MEND ?	$\begin{array}{\|l\|} \hline \text { CHAMF } \\ \text { CUTTER } \end{array}$	
15	(NOMINAL DIANETER omitted) MINIMUM DIAMETER ?	$1,7, \text { INPUT }$	Enter the minimum diameter of a chamfering cutter.

- Program Examples

Three program examples shown below are provided. They have their respective meanings and become more difficult in the order of No. I thru No. 3.

No. 1: Basic Shape

- With machining classified by pattern, all necessary tools are determined by selecting a pattern.
- A face milling path is also determined automatically with TYPE and SHAPE.
- A feed circumferential speed and a feed are automatically determined by selecting materials of the work and of the cutting edge.
- Drilling is also facilitated because it is classified by pattern.

No. 2: o For tapping, up to the lower drill is automatically determined. o An irregular drilling pattern can be easilj treated too.

- The cycle of a drill is also automatically determined according to a drill hole depth.

No. 3: o According to the roughness of a face to be machined, rough finishing is carried out. Both depth and width to be cut off are automatically detemmined.

- Any shape that cannot be represented by a machining pattern can be freely added.
- For one machining plural shape patterns can be entered. However, there is no tool path. (Jigs and tools can be checked for possible interference.)
- Up to the lower hole to be bored (BOR-B) is automatically determined.
- Chamfering can be carrfed out easily too.

Examples have been selected so that the above-mentioned features can be easily gathered.

They are so designed as to be programable if you follow the steps in the operation frame of program sheets.

If the INPUT only is specified in the operation frame, the same will result also from depressing

- If a wrong qumeral key has been depressed (without the INPUT depressed yet), depress the CLEAR and re-enter a correct value.
- If a wrong menu key (\mathbb{L}) has been depressed, or if a wrong numerical value has been entered (with the INPUT depressed after the numeral key), return the cursor by
 and operate anew.

To erase an inputted mumerical value, depress \square and CLEAR

- The portion underlined in the picture is the position where a numerical value is to be inputted or a menu key is to be selected.

WORK NO. 2
90

Blank shape

WORX NO. 2
UNO MAT INITIAL-Z MULTI MULTI PITCH-X EITCH-Y

$\frac{1}{\text { UNO }} \frac{\text { WPC-1 }}{\text { UNIT }} \frac{-100}{\text { DEPTH SRV-Z }} \frac{-200}{0} \frac{-350}{\text { SRV-R }} \frac{0}{\text { BTM WAL FIN-Z FIN-R }}$

(1)CIR (2) 0 (3) 0 (4) 80
UNO UNIT DEFPTH SRV-Z SRV-R RGH CHMF FIN-Z FIN-R
(5) 3(6) LIN OUT (7) 26 (8) 26 (9) 5 (10 1 * 0
SNO TOOL NOM- O NO. APRCH-X APRCH-Y TYPE ZFD DEP-Z WID-R C-SP FR M M R1 (12) E-MILI (13) 20A
 SNO TOL NOM- \varnothing NO. HOLE- \varnothing HOLE-DEP PRE-DIA PRE-DEP RGH DEPTH C-SPFR M M
 UNO UNIT CONTI NUMBER
END $\quad \underline{O} \quad \underline{O}$

NO.	PROGRAM NESSAGE	OPERATION	MEANING OF OPERATION
	$\frac{\mathrm{UNO}}{0} \sim 4$ th line $\left(\frac{\mathrm{SNO}}{\mathrm{RI}}\right)$ are omitted. See WORK NO. 1.		
l	PATTERN OF EICURE <NIENU> ?	CIRCLE	Enter a machining shape. (circte in the example)
2	CLRCLE CENTER X ?	0 \square INPUT	X coordinate value of machining shape center
3	CIRCIE CENTER Y ?	0 \square	Y coordinate value of machining shape center
4	CIRCLE RADIUS R	$8,0, \quad \text { INPUT }$	Enter a radius. (In the example, the radius is 75 . This is, however, a finished size. Therefore, enter 80, with cutting allowance of 5 mm in UNO 3 taken into account.)
5	POINT CUTTING PATTERN <MENU> ?	SHAPE END	End of a machining shape definition
6	MACHINING UNIT <MENU> ?	LINE MACH-ING	Select a machining unit.
61	NACHINING UNIT <MENU> ?	LINE OUT $\square \mathrm{D}$	Select one of LINE/MACH-ING units. (line out machining in the example)

No.	PROGRAM MESSAGE	OPERATION	MEANING OF OPERATION
7	DIST: WPC-Z $=0$ TO FIN. SURFACE ?	\square INPUT	Distance between program zero point and bottom to be machined (depth) (In the example, the thickness is 25 mm . Since the side is cut off, however, take an allowance of 1 mm .)
8	2 AXIS STOCK REMOVAL ?	2, 6, INPUT	2 axial cutting allowance
9	X/Y AXIS STOCK REMOVAL ?	$5, \text { INPUT }$	Radial cutting allowance
10	SURFACE ROUGHNESS <MENU> ?	T1	Machined face roughness.
11	FINISH ALLOWANCE-2 ? FINISH ALLONANCE-R ?	INPUT INPUP	Determine rough and/or finish machining
12	WHICH TYPE OF TOOL <MENU> ?	INPUT or ENDMILL	Tool name (questioned in the menu though automatically determined)
13	NOHINAL DIAMETER	2, 0,0 INPUT	Tool diameter (nominal diameter)
13^{\prime}	TOOL FILE CODE <MENU> ?	A	Set a suffix
14	APEROACH POINT X, AUTO $+\langle$ HENU> ? APPROACH POINT Y, AUTO-<HENU> ?		Determine an approach point (automatically determined)

The 8th line FIG is omitted. See (1)-(5).

No.	PROGRAM NESSAGE	OPERATION	HEANING Of OPERA'tION
28	STARTING POINT X ?	$-7,4,5, \text { INPUT }$	X coordinate value of square starting point (first hole)
29	STARTING POINT Y ?	$\square, 4,5$, INPUT	Y coordinate value of square starting point (first hole)
30	ANG OF Start lin from x AXIS ?	0 INPUT \square	Angle formed between first point array of square and X axis (in degrees) (In the example, $\theta 1=0$, because they are in parallel.)
31	ANG BETWEEN THE TNO LIINES ?	9 \square INPUT	Angle formed between first and last arrays (in degrees) (In the example, $\theta 2=90$.) (See illustration below.)
	-		(Example)
32	PITCH/LENGTH OT PATTERN AN1 ?	$9,0,0 \text { INPUT }$	Point pitch in first array (45 in the example)
33	PITCH/LENGTH OF PATTERN AN2 ?	\square 4 INPUT	Point pitch in the second (last) array (45 in the example)
34	T1 \& T2+《PITCH: 0 , LINE LENG. $1>$?	$0, \text { INPUT }$	```0 with T1 and T2 in (31) and (32) specified in pitch 1 with T1 and T2 in (31) and (32) specified in length```
35	NUHEBER OF HOLES IN LINE AN1?	$2, \text { INPUT }$	Number of holes on the first array (2 in the example)
36	NUMBER OF HOLES IN LTNE AN2 ?	$3 \text {, INPUT }$	Number of holes on the 2nd (last) array (3 in the example)

HORK NO. 3

WORK NO. 3

No.	program message	Operation	meaning of operation
15	circ. interpolation center x ?	$[0, \text { INPUT }$	X coordinate value of arc center
16	crirc. interpolation center y ?	$\begin{array}{\|l\|} \hline 0 \\ \hline \end{array}$	Y coordinate value of arc center
17	INTERSEC.PT LINE/CTR<MENU>?	UP	Set a modifier
		V	Move the cursor downward. (Subsequently, set (D) + (E) \rightarrow (A) in that order.)
	Likewise, proceed to $\frac{\text { FIG }}{4} \approx \frac{\text { FIG }}{6}$	$\begin{aligned} & \text { (Before UNO after completion } \\ & \text { of } \begin{array}{c} \text { FIG } \\ 6 \end{array}{ }^{4} \left\lvert\, \begin{array}{c} \text { SHAPE } \\ \text { END } \\ \hline \end{array}\right. \\ & \hline \end{aligned}$	
	$\frac{\mathrm{UNO}}{4} \sim \frac{\mathrm{UNO}}{2}$ are omitted.		
1.8	MACHINING UNIT <AENU> ?	\|POINT MACH-ING	Machining unit.
18'	NACHINING UNIT < HENSI >	${ }^{\substack{\text { Boring } \\ \text { He }}}$	Enter point machining unit
18"	MACHINING UNIT <MENU> ?	$\underset{\substack{\text { BORING } \\ \square}}{\substack{\text { a }}}$	Enter classification in boring unit
19	HOLE DIAMETER ?	[3, 3, , , 5, INPUT	Boring hole diameter

NO.	PROGRAM MESSAGE	OPERATION	MEANING OF OPERATION
26	CHAMFER WIDTH ?	[1, INPUT	Stroke of chamfering at the mouth.
27	BOTTOM ROUGHNESS <MENU> ?	\| $\begin{aligned} & 7 \\ & 1\end{aligned}$	Bottom finish face roughness.
28	PREPARED HOLE DIAMETER ?	[3, $3,5,5]$, InPUT	Bottom hole diamter.
29	CHAMFER WIDTH ?	$1, \text { INPUT }$	Stroke of chamfering at the mouth of bottom hole.
30	Whicl type of tool <menu> ?	$\text { INPUT }, \text { (or ENDMILLI }$	Tool name (automatically determined)
31	NOMINAL DIAMTER ?	3, 0 , 0 INPUT	Tool nominal diameter
31^{\prime}	TOOL FILE CODE <MENU> ?	A	Suffix
32	HOLE DIAMETER ?	INPUT	Circle machining hole diameter (automatically determined)
33	HOLE DEPTH ?	INPUT	Circle machining hole depth (automatically determined)
34	PREPARED HOLE DIAMETER ?	InPUT	Bottom hole diameter (automatically determined)

5. MISCELLANEOUS FUNCTION (M FUNCTION)

$\begin{gathered} \mathrm{M} \\ \mathrm{CODE} \end{gathered}$	FORMAT	HQC	H-12	H-15	H-22	H25Q	H-15J	H-25SP	V-7.5	$\begin{aligned} & \mathrm{V}-10 \mathrm{TS} \\ & \mathrm{~V}-10 \mathrm{~N} \end{aligned}$	$\mathrm{V}-15 \mathrm{~N}$	$\mathrm{V}-20$	VQC		
00	Program stop	0	0	0	0	0	0	0	0	0	0	0	0		
01	Optional program stop	\bigcirc	O	O	\bigcirc	0	\bigcirc	\bigcirc	0	0	\bigcirc	O	0		
02	End of program (EIA/ISO)	0	0	0	0	\bigcirc	0	0							
03	Spindle CW start	O	0	0	0	0	\bigcirc	O	0	0	0	O	0		
04	Spindle CCN start	\bigcirc	O	0	0	0	0	\bigcirc	0	0	0	0	0		
05	Spindle stop	O	0	0	0	0	0	0	\bigcirc	O	O	0	0		
06	Tool change (EIA/ISO)		0	0	\bigcirc	O	\bigcirc	0	\bigcirc	O	O	O			
07	011 mist ON	0	0	O	O	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	0	0		
08	Flood coolant ON	\bigcirc	\bigcirc	0	0	0	0	0	\bigcirc	0	O	\bigcirc	0		
09	Oil mist/Flood coolant/Air blast:/Chip removal/OiI hole adapter/Tapping coolant OFF	\bigcirc	0	0	O	O	0	\bigcirc	\bigcirc	O	0	\bigcirc	\bigcirc		
10	Tool clamp	(0)	\bigcirc	©	©	0	(1)	(0)							
11.	'Tool unclamp	©	(0)	(0)	©	0	(1)	(0)							
12															
13															
14															
15	Magazine cover CI,OSE	0											0		
16	Magazine cover OPEN	0											0		
17															
18															
19	Spindle oriented stop	0	0	O	O	O	O	O	O	0	0	O	0		
20	Special head clamp					\bigcirc		\bigcirc							
21	Spectal head unclamp					O		O							
22															

$\begin{aligned} & \text { M } \\ & \text { come } \end{aligned}$	FORAAT	1102 C	II-12	II-15	11-22	H250	11-1.5.5	II-25SP	v-7.5	$\begin{aligned} & v-10 ' \mathrm{I} \\ & \mathrm{~V}-1.0 \mathrm{~N} \end{aligned}$	$\mathrm{V}-1.5 \mathrm{~N}$	V-20	VQC		
23 24	Error detect on Error detect OFF	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\frac{0}{0}$	$\begin{gathered} 0 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{O} \\ \hline \mathrm{O} \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & 0 \end{aligned}$	$\frac{0}{0}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\frac{0}{0}$	$\frac{0}{0}$	-	
25	Drum shifter retract					O		(0)							
26															
27	Drum load					\bigcirc		(0)							
28	Drum unload					0		(0)							
29															
30	Reset and rewind EIA/ISO)	0	0	0	0	0	0		0	0	0	0	O		
31	Cancel interlock					O									
32	M31 cancel					0									
33															
34															
35	Tool breakage search	0	0	\bigcirc	O	0	0	O	0	0	0	0	O		
36	Spindle low gear					0									
37	Spindle range "Low" Spindle range "Low middle"(Only		-25Q)	0	O	0	O								
38	Spindle range "Middle/Low" Spindle range " High middle"	6	6	O	07	0	0		6	\%	$\%$	6	. 6		
39	Spindle range "High"	0	0	0	0	0	0	0	0	0	0	0	0		
40	Spindle neutral			0	\bigcirc			\bigcirc							
41															
42	Index table CCW						0								
43	Index table command 3			(1)	(1)	()	©		(2)	()	(0)	©	(9)		
44	Index table command 1			©	()	(0)	(O)		(0)	©	O	(o)	(o)		
45	Index table comunand 2			Q	(0)	(0)	(0)		()	(2)	©	(0)	(2)		

(a) Option

$\stackrel{\mathrm{M}}{\mathrm{CODE}}$	FORMAT	HQC	11-12	H-15	H-22	H25Q	H-15J	H-25SP	V-7.5	$\begin{array}{\|l\|} \hline \mathrm{V}-10 \mathrm{Ts} \\ \mathrm{~V}-10 \mathrm{~N} \\ \hline \end{array}$	$\mathrm{V}-15 \mathrm{~N}$	V-20	VQC		
70			(0)	(2)	(0)										
71	Pallet No. 1 selection	©	(O)	(0)	(0)	0	(0)		(0)	(3)	(0)	(0).	(0)		
72	Pallet No. 2 selection	(0)	©	©	(1)	0	(0)		©	(1)	(1)	(0)	(0)		
73	Pallet No. 3 selection	(o)	(0)	(0)	(0)		(0)			(1)	©	(0)	(0)		
74	Pallet No. 4 selection	(O)	O	(0)	(3)		©			(1)	(0)	(0)	©		
75	Pallet No. 5 selection	(O)	(0)	(0)	(O)		(0)						©		
76	Pallet No. 6 selection	(O)	(O	(1)		(0)								
77	Pallet No, 7 selection		©	(0)	(O)		©								
78	Pallet No. 8 selection		(0)	©	(1)		(2)								
79	Pallet No. 9 selection		O	(2)	(0)		(O)								
80	Pallet No. 10 selection						(O)								
81	Pallet No. 11 selection				.		(0)								
82	Pallet No. 12 selection						(0)								
83	Pallet No. 13 selection						(0)								
84	Pallet No. 14 selection						©								
85	Pallet No. 15 selection						©								
86	Pallet No. 16 selection						()								
87	Special head tool clamp														
88	Special head tool clamp					0									
89	Special head tool unclamp					O									
90	Mirror image cancel	O	\bigcirc	0	0	0	0	0	0	0	0	0	0		
91	Mirror image X ON	O	\bigcirc	\bigcirc	0	0	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0		
92	Mirror image Y ON	0	0	0	\bigcirc	O	\bigcirc	O	O	0	\bigcirc	0	0		
93															
94															

CODE	FUNCTION	DESCRIPTION
M00	Program stop	After executing the block for which MOO has been commanded, the code stops the automatic operation. All modal information will be stored.
MO1	Optional program stop	After executing the block for which MOl has been commanded, the code stops the automatic operation, provided, however, that the optional stop switch on the control panel is ON . Like MOO, all modal information is stored.
M02	End of program (EIA/ISO)	This code causes the EIA/ISO program to stop running while resetting the NC unit.
M03	Spindle CW start	This command causes the spindle to turn in the direction illustrated. V-Type н-Type
M04	Spindle CCW start	This command causes the spindle to turin in the direction illustrated.
M05	Spindle stop	This command causes the spindle to stop turning.
M06	Tool change (EIA/ISO)	This code causes the EIA/ISO program to return to a specified magazine the tool attached to the spindle after replaceing it with the tool loaded onto the auxiliary by Txx beforehand.
M07	Oil mist ON	This command causes a cutting fluid mist to be discharged.

CODE	FUNCTION	DESCRIPTION
M08	Coolant Flood ON	This comand causes liquid cutting fluid to be discharged.
M09	011 mist/Flood coolant/Air blast/ Chip removal/Oil hole adapter/Tapping coolant OFF	Turning OFF oil mist, flood coolant, work air blast, ofl hole adapter, tapping coolant, chip removal operations by commands M07, M08, M50 and M51, M52, M53 and M54.
MIO	Tool clamp	This command causes the spindle to clamp a tool.
MII	Tool unclamp	This command causes the spindle to unclamp a tool.
MI2		
M13		
M14		
M15	Magazine cover CLOSE	The magazine cover closes.
M16	Magazine cover OPEN	The magazine cover opens. (Tool change possible condition)
M17		
M18		
M19	Spindle oriented stop	This command causes the spindle to stop in a place. This command is used when it is necessary during the ATC operation to cause the position of the tool key way to coincide with that of the key at the end of the spindle. Do not give a spindle orlent command with the gear in neutral position. Be sure to do 1t with the gear in low, middle or high position.
M20	Special head clamp	It is used in the special head change cycle, not used normally.
M21	Special head unclamp	M20 clamps special head. M21 unclamps special head.

CODE	FUNCTION	DESCRIPTION
M22		
M23	Error detect ON	The corner will be machined sharp by the command of M23 Tool stops in a moment. This input of M 24 or turning of the power.
M24	Error detect OFF	Cancel M23. M24 has already been selected when power is turned on, the comer will be machined in a round manner by this command. The spindle does not stop at the comer.
M25	Drum shifter retract	Give this command after confirming that the shift pin has retracted, and the drum shifter will retract. This command is used only when the shifter has stopped operation due to troubles during the drum change cycle. This is not used normally.
M26		
M27 M28	Drum load Drum unload	This command is used in the drum change cycle, not used usually. DRUM LOAD command causes the drum to be transferrered from the stock and mounted on the machine and DRUM UNLOAD command causes the drum to be. returned to the stocker from the machine.
M29		

CODE	FUNCTION	DESCRIPTION
M30	Reset and rewind (EIA/ISO)	This code causes the EIA/ISO program to stop running while resetting the NC unit. At the same time, it causes the magnetic tape to be rewound in the TAPE OPERATION mode.
M31	Cancel interlock	It is used in a drum changer cycle with a user macro. This command cancels ordinary tovertravel signal of 2 axis. It is not used usually.
M 32	M31 cancel	It cancels M31.
M33		
M34		
M35	Tool breakage search command	To give the tool breakage search command to the NC unit. (unusable for the EIA/ISO programs)
M36	Spindle range "Low"	This command causes the spindle to turn in a low speed range.
M37	Spindle range "Low" Spindle range "Low middle" (only for $\mathrm{H}-25 \mathrm{Q}$)	This command causes the spindle to turn in a low speed range. This command causes the spindle to turn in a low middle speed range.
M38	Spindle range "Middle/Low" Spindle range "High middle" (only for $\mathrm{H}-25 \mathrm{Q}$)	This command causes the spindle to turn in a middle and low speed range. This command causes the spindle to turn in a high widdle, speed range.
M39	Spindle range "HIgh"	This command causes the spindle to turn in a high speed range.
M40	Spindle neutral	Shifts the spindle gear to the neutral position.
M41		
M42		

CODE	FUNCTION	DESCRIPTION
M 43	Index table command 3 (option)	To give a command to the externally mounted index table by this command. (optional function)
M44	Index table command 1 (option)	To give a command to the externally mounted index table by this command. (optional function)
M45	Index table command 2 (option)	To give a command to the externally mounted index table by this command. (optional function)
M46		
M47		
M48	$\begin{aligned} & \text { Cancel M49 } \\ & \text { (EIA/ISO) } \end{aligned}$	This code causes the EIA/ISO program to invalidity the OVERRIDE CANCEL function specified by the M49.
M49	Override cancel. (EIA/ISO)	This code cancels an OVERRIDE in the EIA/ISO program.
M50	Air blast start	This command causes AIR BLAST to operate and air to be discharged.
M51	Coolant through spindle/oil hole coolant start (option)	Commanding the M51 will permit liquid coolant to be discharged cut of the spindle.
M52	Tap coolant (option)	This command causes the cutting fluid to be discharged.
M53	Air hole cool/ adaptor ON	To command suction when a chip sucking tool is used.
M54	Chip air blow Workpiece cleaning	By this command, the automatic tool shank cleaning device is switched on. It can be cancelled by MO9. The workpiece claning unit moves downward to apply coolant and air to the workpiece and then moves upward.

CODE	FUNCTION	DESCRIPTION
M55		
M56		
M57		
M58	Spare tool check	With the M58 inputted, the machine will make a single block stop when a life expired tool is specified in the ptorgram. (optional function)
M59	Program end ready	To give the program end ready command to the externally CPU. (option) This coumand is used in FMS, not used usually.
M60		
M61	Pallet load	Commanding M61 will make the pallet in the pailet stand transported to on the table. Pallet clamping and unclamping are done automatically.
M62	Pallet unload	Commanding M62 will make the pallet on the table transported to on the pallet stand. Pallet clamping and unclamping are done automatically.
M63		
M64	Pallet door close	Closes the pallet door by this command.
M65	Pallet door open	Opens the pallet door by this command.
M66	Pallet fork extend	Extends the pallet fork by this command.
M67		
M68	Pallet clamp	Commanding M68 will make the pallet be clamped.
M69	Pallet unclamp	Commanding M69 will make the pallet be unclamped.
M70		

7/9

CODE	FUNCTION		DESCRIPTION
M71	Pallet No. 1 selection (option)	7	
M 72	```Pallet No. } selection (option)```		
M73	Pallet No. 3 selection (option)		
M74	Pallet No. 4 selection (option)		
M75	$\begin{aligned} & \text { Pallet No. } 5 \\ & \text { selection } \\ & \text { (option) } \end{aligned}$		
M.76	```Pallet No.\sigma selection (option)```		These commands select the pallet number in the case of the multiple pallet changer.
M77	```Pallet No.7 selection (option)```	.	
M78	```Pallet No. } selection (option)```		
M79	```Pallet No.9 selection (option)```		
M80	```Pallet No.l0 selection (option)```		1
M81	```Pallet No.ll selection (option)```		
M82	```Pallet No. }1 selection (option)```		
M83	```Pallet No.l3 selection (option)```] . .

CODE	FUNCTION	DESCRIPTION
M84	Pallet No. 14 selection (option)	These commands select the pallet number in the case of the multiple pallet changer.
M85	Pallet No. 15 selection (option)	
M86	Pallet No. 16 selection (option)	
M87	Special head tool clamp	It is used in the AUX. HEAD TOOL change cycle, not used usually.
M88	Special head tool clamp	It causes the special head to clamp a tool.
M89	Special head tool unclamp	It causes the special head to unclamp a tool.
M90	Mirror image cancel	Cancels the mirror image
M91	Mirror image FRM-X ON	Causes the mirror image symmetrical with respect to the WPC-X to function for all the units including the point machining mode, line machining mode, face machining mode and manual program mode units.
M92	Mirror image FRM-Y ON	Causes the mirror image symmetrical with respect to the WPC-Y to function for all the units including the point machining mode, face machining made and manual program mode units.
M93		
M94		
M95		
M96		
M97		

CODE	FUNCTION	DESCRIPTION
M98	Sub-program call- out (EIA/ISO)	This code causes the EIA/ISO program to call a sub-program.
M99	End of sub- program	This code causes the EIA/ISO program to return to the main program at the end of a sub-program.
M100	For index externally attached	Cannot be entered together with M44 or M45 sImultaneously.
M10I	For fnde externally attached	Cannot be entered together with M44 or M45 sfmultaneously.

> Preparing an CAM M2 + ROTARY TABLE Program (OPTION)

The use of a rotary table attached to MAZATROL CAM M-2 is discribed. For a rotary table, comand code is $^{\text {is }}$ used. To input the code, use the menu or input data in the position indicated by the cursor.

A program will rum sequentially.

UNO	AI	INITIAL-Z	MLLTI MODE	MULTI PITCH-X
0	FCD	50		MUIT PITCR-X PIHCE-1

will appear in No. 1 block. In this case, the inftial point input must be high enough so the rotary table will not interfere with any jig or workpiece even while tuming.

UNO UNIT	\because	X	Y	0	Z	4
WPC- 0	-356.	-254.	0.	-382.	0.	

When inputting WPC, X, Y and Z should be inputted by specifying one point on the workpiece to be machined. In the illustration, 0 is inputted on the 4 th axis. This means that coordinates X, Y and Z are determined, with the 4 th axis positioned at 0°. Θ, moreover, is independent of the 4 th axis move, and should be used to input an inclination of the workpiece on the $X-Y$ plane.

An Example of Drawing

FC

To input a work program on the 4 th axis, use the manual program mode unit.

$\frac{\text { UNO }}{}$	MNIT	PRO	$\begin{aligned} & \text { TOOL } \\ & \mathrm{E}-\mathrm{MIILL} \end{aligned}$		$\begin{aligned} & \text { NOM- } \phi \\ & 20 . \end{aligned}$					
SNO	G1	G2	DATA-1		DATA-2	DATA-3	DATA-4	DATA-5	DATA-6	S M/B
1	90	94								M 38
2	0	2	10.	X	-50.					1000M 3
3	1	Z	-10.	F	50.					
4		4	90.	F	80.					
5	0	Z	10.							
6		4	180.							
7	1	2	-10.	F	50.					
8		4	270.	F	80.					
9	0	Z	50.							

To machine a cam groove using the 4 th axis program.
Input an angle of 90° in No. 4 block and feed $F 80$ as the 4 th axis conmand. After moying the tool upward in No. 5 block, the 4 th axts returns to the zero point subject to the command in No. 6 block.

After this block, add an extra unit or complete the program in use.

NOTE: Feed F cannot be set on the 4 th axis independently of the other three axis (X, Y and Z). A worm screw, cam, etc. move on the 4 th axis and on the X - or Y-axis only at a constant F feed.

Therefore, only those workpieces which have a constant pitch can be machined.

The 4 th axis command cannot be given in an automatic programming unit, only in a manual program mode unit.

Method of Programing with 4th Axis Rotary Table Used as an Indexing Table.

The rotary table can also be used as an index once the table and workpiece have been installed as illustrated above. In other words, a workpiece can be drilled and milled on both top and bottom surfaces.
The drawing of a workpiece is given below.

$0^{\circ} / 180^{\circ}$ plane
Drawing Example 2 .

APP. 5

Input a common mit in unit number($\mathbb{N} N$) 0 . Input a higher value in initial point Z (INITIAL-Z) so that the fotary table will not interfere when turning.

UNO MAT	INITLAL-Z	MULTI	MODE MULTI	PITCH-X	PITCH-Y
0	FCD	150.			

Then, input the basic coordinate system. This is an example in which inputting is started with the 4 th axis positioned at 0°.

UNO UNIT	X	Y	Θ	Z	4
1 WPC -0	-412.	-250.	0.	-350.	0.

After that, start the work program. Machining begins with milling the plane at 0°. In milling, the Itne from $(-100,70)$ to (100, 70) in the drawing can not be done directly. This portion must be machined on the right of the line with the end mill. A little deformed shape must be inputted in milling, accordingly.

UNO	UNIT	DEPTH		SRV-2	SRV-R	BTM		WAL	FIN-2			
2	F-MILL	0.		2.	+	3		4	0.			
SNO	TOOL	NOM-\$	NO.	APRCH-X	APRCH-	TYPE	ZFD	DEP-Z	WID-R		C-SP	FR
R 1	F-MILL	100. A		-160.	-60.	X BI-DI	+	2.	70		85	1.314
EIG	PTN	PIX/CX	P1Y	/CY	P3x/R	P3Y	CN1	CN2		CN3		
1	SQR	-100.	-80		100.	50.						

After completion of this machining, turn the workpiece. To turn it, the manual program mode unit is used.

UNO	UNIT	TOOL	NOM- ${ }^{\text {, }}$, NO.				
3	MANU PRO	F-MILL	100. A				
SNO	G1 G2	DATA!	DATA 2 data 3	DATA 4	DATA S	DATA 6	S M/B
1	0090	A -180.					
UNO	UNIT	x	Y	θ	z	4	
4	WPC - 0	-412.	-250.	0.	-350.	130.	

The same milling is performed again. After completion of miling, no further willing is required. Keeping the 180° plane, as it is, proceed to the next machining process. Change tools. Use the end will and proceed to machining on the right of the line.

On the 180° plane, there is another end mill machining process which is the pocket machining whicin makes a concavity at the center. Use the same end mill and follow the program.

This concludes the process of entirely milling a 180° plane. Now, turn the rotary table. According to the drawing, however, portions to be machined using the end mill are on $0^{\circ}, 90^{\circ}, 180^{\circ}$ and 270° planes. Then, select the 270° plane which is nearest to the 180° plane. As a matter of course, the value of Z will change. (This change is to be measured.)

UNIT
MANU PRO
TOOL
NOM- α NO.
$20 . A$

G1 G2	DATA 1
0090	A-270.
UNIT	x
WPC	

DATA 2 DATA 3 DATA 4 DATAS DATA 6 Sm m
\xrightarrow{Y}
0
$\underset{-250}{2}$
4
270.

The semi-cylindrical shape existing on the 270° plane may be formed by machining a square shape with the end mill in the linear- or planemachining pocket mode. In this example, the semi-cylindical shape is inputted in the pocket. Of various shapes, the square requires a tool diameter compensation. It is necessary, therefore, to input a slightly larger value.

UNO	UNIT	IEPTIT	SRV-Z	SRY-8	BTM	WAL	FIn-2	FIN-R	
10	POCXET	10.	10.	+	3	3	0.	0.	
SNO	T00L	NOM-d NO.	APRCE-X'	APRCH-Y	TYPE	ZFD DEP-Z	HID-R	C-SF	FR
R 1	E-MILL	20. A	0.	-9.	CH	G01 10.	12.	11	0.063
FIG	PTN	P1X/CX	/CY	P3I/R	P37	CN1	CN2	CN3	CM4
1	SQR	-40.		40.	20.				

This concludes machining the 270° plane. Next, using the same end mill, move to the 0° plane. On this plane, Inear machining and pocket miling must be performed to follow up the previous milling. Input the data involved.

Then the 0° plane is completely milled, only the 90° plane remains. Continue tuming the workpiece.

UNO	UNIT	TOOL	NCM- ${ }^{\text {d }}$ NO.				
15	MANU PRO	E-MILL	20. A				
SNO	G1 G2	DATA 1	DATA 2 DATA 3	DATA 4	DATA 5	DATA 6	S M/B
!	0090	A90.					
UNO	UNIT	x	Y	\bigcirc	z	4	
16	WPC- 0	412.	-250.	0.	-250.	9.	

UNO	WNIT	DEPIH		SRV-Z		SRV-R	BTM	WAL		FIN-2		-R	
17	POCKET	10.		10.		+	3	3		0.			
SNO	TOOL	NOM-中	NO.	APRCH-X		APRCH-Y	TYPE	2FD	观P-2		WID-R	C-SP	FR
R 1	E-MILL	20. A		0.		-9.	. CH	GO1	10.		12.	11	0.063
EIG	ITN	P1X/CX	P1Y	/CY	P3x/R	$\mathrm{R} \quad \mathrm{P}$		CNI		CN2		CN3	CN4
1	SQR	-40.	-20		40.	20							

Now, all milling operations have been completed. 0° and 180° planes remain untapped, so, index the 180° plane and perform the tapping operation.
UNO UNIT TOOL NOM- NO.
17 MANU PRO CTR-DR $20 . A$

In the present program, the 4 th axis is indexed using not the manual program mode unit, but a unit in the basic coordinate system.

Example of Cutting a Cylindrical Cam

To prepare a program to cut the cylindrical cam illustrated. Take point 0 as the zero point.
First of all, prepare a common unt and an WPC mat.

Then, use the manual program mode unit to prepare a cutting program.

In No. 1 block, select ABSOLUTE and GEAR.
In No. 2 block, input the spindle speed.
In No. 3 block, make a relief 20 mmabo the zero point in the basic coordinace system and +20 mm in the positive X direction.

In No. 4 block, lower the cutting edge in the Z-axis direction to where cutting is to be started.

In No. 5 block, move the cutting edge 260 min the negative X-axis direction. at the same time, turn the 4 th axis $1,260^{\circ}$ in the negative direction. In this case, set the feedrate to $50 \mathrm{~mm} / \mathrm{min}$.

Int this case, the X -axis moves by $260-(-20)=280 \mathrm{~mm}$ in total.
In the meanclme, the rotary table have 3.5 turns $=280 \div 80$. This may be coṇverted to a right angle as follows:

$$
3.5 \times 360=1,260
$$

This 1,260-degree angle is inputted in No. 5 block. F50, is distributed in the 4 th axis and in the X-axis in proportion to their strokes.

In No. 6 block, a comand is given to return to the basic coordinate gystem after the cutting edge has separated from the workpiece.

Thus, a cylindrical cam has resulted.
Cutting speeds cannot be specified for the 4 th axds independently of the $X-$, Y- and Z-axes. A ratio of a moving stroke of the 4 th axis to that on one of the other three axes can be used to distribute the value of F. Thus concludes the 4 th axis specification.

Example of Cutting a Cylindrical Cam

Cylindrical Cam

MAZATROL M-2 4TA AXIS UNIT (Option)

1. The 4th axis move command can be inputted in the manual program mode unit only.
2. A workplece coordinate system can be set up by inputting data on 4 th axis in the NPC mit. Generally, 0 is inputted.
3. Three of X, Y, Z and 4 th axes can be interpolated Iinearly (GOI) at a time. However, it is impossible to interpolate an arc which Includes . the 4 thaxfs (GO2 and GO3) or to make a helical cut on a workpiece.
4. The linear interpolation including the 4 th axis is as illustrated below.
GO1.
G 91 $\times 100$
4
1800 F 200

Specify an angle

APD. 13
5. F in the program represents the combined speed of velocity components for each axis.
$F=\sqrt{F x^{2}+F y^{2}+F a^{2}}$ (when X, Y and 4 th axes are interpolated at a time)
$F_{X}: F_{Y}: F_{a}=X$ axis moving stroke $: ~ Y$ axis moving stroke $: 4$ th axis

[^0]: * In auto mode operation, this height is used for positioning the tool.

